mimic
Her-darling 4 months ago
parent ae6989ecf8
commit 371e761a44

@ -293,6 +293,30 @@ class dribble(gym.Env):
arms[0:4] += a[12:16] * 4 # arms pitch+roll
return l_ankle_pos, r_ankle_pos, l_foot_rot, r_foot_rot, arms
def loss(self, obs, action_p, action_r):
r = self.player.world.robot
with open(M.get_active_directory([
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl"
][r.type]), 'rb') as f:
model = pickle.load(f)
act = run_mlp(obs, model)
a_l_ankle_pos, a_r_ankle_pos, a_l_foot_rot, a_r_foot_rot, a_arms = self.execute(act)
act_p = np.concatenate((a_l_ankle_pos, a_r_ankle_pos))
act_r = np.concatenate((a_l_foot_rot, a_r_foot_rot, a_arms))
action_p_tensor = torch.from_numpy(action_p)
action_r_tensor = torch.from_numpy(action_r)
act_p_tensor = torch.from_numpy(act_p)
act_r_tensor = torch.from_numpy(act_r)
loss_p = torch.exp(-40*torch.norm(action_p_tensor - act_p_tensor, p=2))
loss_r = torch.exp(-0.1*torch.norm(action_r_tensor - act_r_tensor, p=2))
loss = loss_p + loss_r
return loss
def step(self, action):
r = (self.
player.world.robot)
@ -305,31 +329,12 @@ class dribble(gym.Env):
dribble_target = (15, -5)
self.dribble_rel_orientation = self.path_manager.get_dribble_path(optional_2d_target=dribble_target)[1]
# # exponential moving average
# self.act = 0.85 * self.act + 0.15 * action * 0.7 * 0.95 * self.dribble_speed
#
# # execute Step behavior to extract the target positions of each leg (we will override these targets)
# lfy, lfz, rfy, rfz = self.step_generator.get_target_positions(self.step_counter == 0, self.STEP_DUR,
# self.STEP_Z_SPAN,
# self.leg_length * self.STEP_Z_MAX)
#
# # Leg IK
# a = self.act
# l_ankle_pos = (a[0] * 0.025 - 0.01, a[1] * 0.01 + lfy, a[2] * 0.01 + lfz)
# r_ankle_pos = (a[3] * 0.025 - 0.01, a[4] * 0.01 + rfy, a[5] * 0.01 + rfz)
# l_foot_rot = a[6:9] * (2, 2, 3)
# r_foot_rot = a[9:12] * (2, 2, 3)
#
# # Limit leg yaw/pitch (and add bias)
# l_foot_rot[2] = max(0, l_foot_rot[2] + 18.3)
# r_foot_rot[2] = min(0, r_foot_rot[2] - 18.3)
#
# # Arms actions
# arms = np.copy(self.DEFAULT_ARMS) # default arms pose
# arms[0:4] += a[12:16] * 4 # arms pitch+roll
l_ankle_pos, r_ankle_pos, l_foot_rot, r_foot_rot, arms = self.execute(action)
action_p = np.concatenate((l_ankle_pos, r_ankle_pos))
action_r = np.concatenate((l_foot_rot, r_foot_rot, arms))
# Set target positions
self.execute_ik(l_ankle_pos, l_foot_rot, r_ankle_pos, r_foot_rot) # legs
r.set_joints_target_position_direct(slice(14, 22), arms, harmonize=False) # arms
@ -346,26 +351,10 @@ class dribble(gym.Env):
else:
cos_theta = 0
with open(M.get_active_directory([
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl",
"/behaviors/custom/Dribble/dribble_long_R1_00_178M.pkl"
][r.type]), 'rb') as f:
model = pickle.load(f)
act = run_mlp(obs, model)
a_l_ankle_pos, a_r_ankle_pos, a_l_foot_rot, a_r_foot_rot, a_arms = self.execute(act)
act_p = np.concatenate((a_l_ankle_pos, a_r_ankle_pos))
act_r = np.concatenate((a_l_foot_rot, a_r_foot_rot, a_arms))
action_p_tensor = torch.from_numpy(action_p)
action_r_tensor = torch.from_numpy(action_r)
act_p_tensor = torch.from_numpy(act_p)
act_r_tensor = torch.from_numpy(act_r)
loss_p = torch.exp(-torch.norm(action_p_tensor - act_p_tensor, p=2))
loss_r = torch.exp(-torch.norm(action_r_tensor - act_r_tensor, p=2))
loss = self.loss(obs, action_p, action_r)
# 计算奖励
reward = np.linalg.norm(w.ball_cheat_abs_vel) * cos_theta + loss_p + loss_r
reward = np.linalg.norm(w.ball_cheat_abs_vel) * cos_theta
if self.ball_dist_hip_center_2d < 0.115:
reward = 0
@ -387,7 +376,7 @@ class Train(Train_Base):
def train(self, args):
# --------------------------------------- Learning parameters
n_envs = min(16, os.cpu_count())
n_envs = min(12, os.cpu_count())
n_steps_per_env = 1024 # RolloutBuffer is of size (n_steps_per_env * n_envs)
minibatch_size = 64 # should be a factor of (n_steps_per_env * n_envs)
total_steps = 50000000

Loading…
Cancel
Save