Init gym
This commit is contained in:
307
scripts/commons/Script.py
Normal file
307
scripts/commons/Script.py
Normal file
@@ -0,0 +1,307 @@
|
||||
from os import path, listdir, getcwd, cpu_count
|
||||
from os.path import join, realpath, dirname, isfile, isdir, getmtime
|
||||
from scripts.commons.UI import UI
|
||||
import __main__
|
||||
import argparse,json,sys
|
||||
import pickle
|
||||
import subprocess
|
||||
|
||||
|
||||
class Script():
|
||||
ROOT_DIR = path.dirname(path.dirname(realpath( join(getcwd(), dirname(__file__))) )) # project root directory
|
||||
|
||||
def __init__(self, cpp_builder_unum=0) -> None:
|
||||
|
||||
'''
|
||||
Arguments specification
|
||||
-----------------------
|
||||
- To add new arguments, edit the information below
|
||||
- After changing information below, the config.json file must be manually deleted
|
||||
- In other modules, these arguments can be accessed by their 1-letter ID
|
||||
'''
|
||||
# list of arguments: 1-letter ID, Description, Hardcoded default
|
||||
self.options = {'i': ('Server Hostname/IP', 'localhost'),
|
||||
'p': ('Agent Port', '3100'),
|
||||
'm': ('Monitor Port', '3200'),
|
||||
't': ('Team Name', 'FCPortugal'),
|
||||
'u': ('Uniform Number', '1'),
|
||||
'r': ('Robot Type', '1'),
|
||||
'P': ('Penalty Shootout', '0'),
|
||||
'F': ('magmaFatProxy', '0'),
|
||||
'D': ('Debug Mode', '1')}
|
||||
|
||||
# list of arguments: 1-letter ID, data type, choices
|
||||
self.op_types = {'i': (str, None),
|
||||
'p': (int, None),
|
||||
'm': (int, None),
|
||||
't': (str, None),
|
||||
'u': (int, range(1,12)),
|
||||
'r': (int, [0,1,2,3,4]),
|
||||
'P': (int, [0,1]),
|
||||
'F': (int, [0,1]),
|
||||
'D': (int, [0,1])}
|
||||
|
||||
'''
|
||||
End of arguments specification
|
||||
'''
|
||||
|
||||
self.read_or_create_config()
|
||||
|
||||
#advance help text position
|
||||
formatter = lambda prog: argparse.HelpFormatter(prog,max_help_position=52)
|
||||
parser = argparse.ArgumentParser(formatter_class=formatter)
|
||||
|
||||
o = self.options
|
||||
t = self.op_types
|
||||
|
||||
for id in self.options: # shorter metavar for aesthetic reasons
|
||||
parser.add_argument(f"-{id}", help=f"{o[id][0]:30}[{o[id][1]:20}]", type=t[id][0], nargs='?', default=o[id][1], metavar='X', choices=t[id][1])
|
||||
|
||||
self.args = parser.parse_args()
|
||||
|
||||
if getattr(sys, 'frozen', False): # disable debug mode when running from binary
|
||||
self.args.D = 0
|
||||
|
||||
self.players = [] # list of created players
|
||||
|
||||
Script.build_cpp_modules(exit_on_build = (cpp_builder_unum != 0 and cpp_builder_unum != self.args.u))
|
||||
|
||||
if self.args.D:
|
||||
try:
|
||||
print(f"\nNOTE: for help run \"python {__main__.__file__} -h\"")
|
||||
except:
|
||||
pass
|
||||
|
||||
columns = [[],[],[]]
|
||||
for key, value in vars(self.args).items():
|
||||
columns[0].append(o[key][0])
|
||||
columns[1].append(o[key][1])
|
||||
columns[2].append(value)
|
||||
|
||||
UI.print_table(columns, ["Argument","Default at /config.json","Active"], alignment=["<","^","^"])
|
||||
|
||||
|
||||
def read_or_create_config(self) -> None:
|
||||
|
||||
if not path.isfile('config.json'): # save hardcoded default values if file does not exist
|
||||
with open("config.json", "w") as f:
|
||||
json.dump(self.options, f, indent=4)
|
||||
else: # load user-defined values (that can be overwritten by command-line arguments)
|
||||
if path.getsize("config.json") == 0: # wait for possible write operation when launching multiple agents
|
||||
from time import sleep
|
||||
sleep(1)
|
||||
if path.getsize("config.json") == 0: # abort after 1 second
|
||||
print("Aborting: 'config.json' is empty. Manually verify and delete if still empty.")
|
||||
exit()
|
||||
|
||||
with open("config.json", "r") as f:
|
||||
self.options = json.loads(f.read())
|
||||
|
||||
|
||||
@staticmethod
|
||||
def build_cpp_modules(special_environment_prefix=[], exit_on_build=False):
|
||||
'''
|
||||
Build C++ modules in folder /cpp using Pybind11
|
||||
|
||||
Parameters
|
||||
----------
|
||||
special_environment_prefix : `list`
|
||||
command prefix to run a given command in the desired environment
|
||||
useful to compile C++ modules for different python interpreter versions (other than default version)
|
||||
Conda Env. example: ['conda', 'run', '-n', 'myEnv']
|
||||
If [] the default python interpreter is used as compilation target
|
||||
exit_on_build : bool
|
||||
exit if there is something to build (so that only 1 player per team builds c++ modules)
|
||||
'''
|
||||
cpp_path = Script.ROOT_DIR + "/cpp/"
|
||||
exclusions = ["__pycache__"]
|
||||
|
||||
cpp_modules = [d for d in listdir(cpp_path) if isdir(join(cpp_path, d)) and d not in exclusions]
|
||||
|
||||
if not cpp_modules: return #no modules to build
|
||||
|
||||
python_cmd = f"python{sys.version_info.major}.{sys.version_info.minor}" # "python3" can select the wrong version, this prevents that
|
||||
|
||||
def init():
|
||||
print("--------------------------\nC++ modules:",cpp_modules)
|
||||
|
||||
try:
|
||||
process = subprocess.Popen(special_environment_prefix+[python_cmd, "-m", "pybind11", "--includes"], stdout=subprocess.PIPE)
|
||||
(includes, err) = process.communicate()
|
||||
process.wait()
|
||||
except:
|
||||
print(f"Error while executing child program: '{python_cmd} -m pybind11 --includes'")
|
||||
exit()
|
||||
|
||||
includes = includes.decode().rstrip() # strip trailing newlines (and other whitespace chars)
|
||||
print("Using Pybind11 includes: '",includes,"'",sep="")
|
||||
return includes
|
||||
|
||||
nproc = str(cpu_count())
|
||||
zero_modules = True
|
||||
|
||||
for module in cpp_modules:
|
||||
module_path = join(cpp_path, module)
|
||||
|
||||
# skip module if there is no Makefile (typical distribution case)
|
||||
if not isfile(join(module_path, "Makefile")):
|
||||
continue
|
||||
|
||||
# skip module in certain conditions
|
||||
if isfile(join(module_path, module+".so")) and isfile(join(module_path, module+".c_info")):
|
||||
with open(join(module_path, module+".c_info"), 'rb') as f:
|
||||
info = pickle.load(f)
|
||||
if info == python_cmd:
|
||||
code_mod_time = max(getmtime(join(module_path, f)) for f in listdir(module_path) if f.endswith(".cpp") or f.endswith(".h"))
|
||||
bin_mod_time = getmtime(join(module_path, module+".so"))
|
||||
if bin_mod_time + 30 > code_mod_time: # favor not building with a margin of 30s (scenario: we unzip the fcpy project, including the binaries, the modification times are all similar)
|
||||
continue
|
||||
|
||||
# init: print stuff & get Pybind11 includes
|
||||
if zero_modules:
|
||||
if exit_on_build:
|
||||
print("There are C++ modules to build. This player is not allowed to build. Aborting.")
|
||||
exit()
|
||||
zero_modules = False
|
||||
includes = init()
|
||||
|
||||
# build module
|
||||
print(f'{f"Building: {module}... ":40}',end='',flush=True)
|
||||
process = subprocess.Popen(['make', '-j'+nproc, 'PYBIND_INCLUDES='+includes], stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=module_path)
|
||||
(output, err) = process.communicate()
|
||||
exit_code = process.wait()
|
||||
if exit_code == 0:
|
||||
print("success!")
|
||||
with open(join(module_path, module+".c_info"),"wb") as f: # save python version
|
||||
pickle.dump(python_cmd, f, protocol=4) # protocol 4 is backward compatible with Python 3.4
|
||||
else:
|
||||
print("Aborting! Building errors:")
|
||||
print(output.decode(), err.decode())
|
||||
exit()
|
||||
|
||||
if not zero_modules:
|
||||
print("All modules were built successfully!\n--------------------------")
|
||||
|
||||
|
||||
def batch_create(self, agent_cls, args_per_player):
|
||||
''' Creates batch of agents '''
|
||||
|
||||
for a in args_per_player:
|
||||
self.players.append( agent_cls(*a) )
|
||||
|
||||
def batch_execute_agent(self, index : slice = slice(None)):
|
||||
'''
|
||||
Executes agent normally (including commit & send)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
index : slice
|
||||
subset of agents
|
||||
(e.g. index=slice(1,2) will select the second agent)
|
||||
(e.g. index=slice(1,3) will select the second and third agents)
|
||||
by default, all agents are selected
|
||||
'''
|
||||
for p in self.players[index]:
|
||||
p.think_and_send()
|
||||
|
||||
def batch_execute_behavior(self, behavior, index : slice = slice(None)):
|
||||
'''
|
||||
Executes behavior
|
||||
|
||||
Parameters
|
||||
----------
|
||||
behavior : str
|
||||
name of behavior to execute
|
||||
index : slice
|
||||
subset of agents
|
||||
(e.g. index=slice(1,2) will select the second agent)
|
||||
(e.g. index=slice(1,3) will select the second and third agents)
|
||||
by default, all agents are selected
|
||||
'''
|
||||
for p in self.players[index]:
|
||||
p.behavior.execute(behavior)
|
||||
|
||||
def batch_commit_and_send(self, index : slice = slice(None)):
|
||||
'''
|
||||
Commits & sends data to server
|
||||
|
||||
Parameters
|
||||
----------
|
||||
index : slice
|
||||
subset of agents
|
||||
(e.g. index=slice(1,2) will select the second agent)
|
||||
(e.g. index=slice(1,3) will select the second and third agents)
|
||||
by default, all agents are selected
|
||||
'''
|
||||
for p in self.players[index]:
|
||||
p.scom.commit_and_send( p.world.robot.get_command() )
|
||||
|
||||
def batch_receive(self, index : slice = slice(None), update=True):
|
||||
'''
|
||||
Waits for server messages
|
||||
|
||||
Parameters
|
||||
----------
|
||||
index : slice
|
||||
subset of agents
|
||||
(e.g. index=slice(1,2) will select the second agent)
|
||||
(e.g. index=slice(1,3) will select the second and third agents)
|
||||
by default, all agents are selected
|
||||
update : bool
|
||||
update world state based on information received from server
|
||||
if False, the agent becomes unaware of itself and its surroundings
|
||||
which is useful for reducing cpu resources for dummy agents in demonstrations
|
||||
'''
|
||||
for p in self.players[index]:
|
||||
p.scom.receive(update)
|
||||
|
||||
def batch_commit_beam(self, pos2d_and_rotation, index : slice = slice(None)):
|
||||
'''
|
||||
Beam all player to 2D position with a given rotation
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos2d_and_rotation : `list`
|
||||
iterable of 2D positions and rotations e.g. [(0,0,45),(-5,0,90)]
|
||||
index : slice
|
||||
subset of agents
|
||||
(e.g. index=slice(1,2) will select the second agent)
|
||||
(e.g. index=slice(1,3) will select the second and third agents)
|
||||
by default, all agents are selected
|
||||
'''
|
||||
for p, pos_rot in zip(self.players[index], pos2d_and_rotation):
|
||||
p.scom.commit_beam(pos_rot[0:2],pos_rot[2])
|
||||
|
||||
def batch_unofficial_beam(self, pos3d_and_rotation, index : slice = slice(None)):
|
||||
'''
|
||||
Beam all player to 3D position with a given rotation
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pos3d_and_rotation : `list`
|
||||
iterable of 3D positions and rotations e.g. [(0,0,0.5,45),(-5,0,0.5,90)]
|
||||
index : slice
|
||||
subset of agents
|
||||
(e.g. index=slice(1,2) will select the second agent)
|
||||
(e.g. index=slice(1,3) will select the second and third agents)
|
||||
by default, all agents are selected
|
||||
'''
|
||||
for p, pos_rot in zip(self.players[index], pos3d_and_rotation):
|
||||
p.scom.unofficial_beam(pos_rot[0:3],pos_rot[3])
|
||||
|
||||
def batch_terminate(self, index : slice = slice(None)):
|
||||
'''
|
||||
Close all sockets connected to the agent port
|
||||
For scripts where the agent lives until the application ends, this is not needed
|
||||
|
||||
Parameters
|
||||
----------
|
||||
index : slice
|
||||
subset of agents
|
||||
(e.g. index=slice(1,2) will select the second agent)
|
||||
(e.g. index=slice(1,3) will select the second and third agents)
|
||||
by default, all agents are selected
|
||||
'''
|
||||
for p in self.players[index]:
|
||||
p.terminate()
|
||||
del self.players[index] # delete selection
|
||||
60
scripts/commons/Server.py
Normal file
60
scripts/commons/Server.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import subprocess
|
||||
|
||||
class Server():
|
||||
def __init__(self, first_server_p, first_monitor_p, n_servers) -> None:
|
||||
try:
|
||||
import psutil
|
||||
self.check_running_servers(psutil, first_server_p, first_monitor_p, n_servers)
|
||||
except ModuleNotFoundError:
|
||||
print("Info: Cannot check if the server is already running, because the psutil module was not found")
|
||||
|
||||
self.first_server_p = first_server_p
|
||||
self.n_servers = n_servers
|
||||
self.rcss_processes = []
|
||||
|
||||
# makes it easier to kill test servers without affecting train servers
|
||||
cmd = "simspark" if n_servers == 1 else "rcssserver3d"
|
||||
for i in range(n_servers):
|
||||
self.rcss_processes.append(
|
||||
subprocess.Popen((f"{cmd} --agent-port {first_server_p+i} --server-port {first_monitor_p+i}").split(),
|
||||
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT, start_new_session=True)
|
||||
)
|
||||
|
||||
def check_running_servers(self, psutil, first_server_p, first_monitor_p, n_servers):
|
||||
''' Check if any server is running on chosen ports '''
|
||||
found = False
|
||||
p_list = [p for p in psutil.process_iter() if p.cmdline() and p.name() in ["rcssserver3d","simspark"]]
|
||||
range1 = (first_server_p, first_server_p + n_servers)
|
||||
range2 = (first_monitor_p,first_monitor_p + n_servers)
|
||||
bad_processes = []
|
||||
|
||||
for p in p_list:
|
||||
# currently ignoring remaining default port when only one of the ports is specified (uncommon scenario)
|
||||
ports = [int(arg) for arg in p.cmdline()[1:] if arg.isdigit()]
|
||||
if len(ports) == 0:
|
||||
ports = [3100,3200] # default server ports (changing this is unlikely)
|
||||
|
||||
conflicts = [str(port) for port in ports if (
|
||||
(range1[0] <= port < range1[1]) or (range2[0] <= port < range2[1]) )]
|
||||
|
||||
if len(conflicts)>0:
|
||||
if not found:
|
||||
print("\nThere are already servers running on the same port(s)!")
|
||||
found = True
|
||||
bad_processes.append(p)
|
||||
print(f"Port(s) {','.join(conflicts)} already in use by \"{' '.join(p.cmdline())}\" (PID:{p.pid})")
|
||||
|
||||
if found:
|
||||
print()
|
||||
while True:
|
||||
inp = input("Enter 'kill' to kill these processes or ctrl+c to abort. ")
|
||||
if inp == "kill":
|
||||
for p in bad_processes:
|
||||
p.kill()
|
||||
return
|
||||
|
||||
|
||||
def kill(self):
|
||||
for p in self.rcss_processes:
|
||||
p.kill()
|
||||
print(f"Killed {self.n_servers} rcssserver3d processes starting at {self.first_server_p}")
|
||||
494
scripts/commons/Train_Base.py
Normal file
494
scripts/commons/Train_Base.py
Normal file
@@ -0,0 +1,494 @@
|
||||
from datetime import datetime, timedelta
|
||||
from itertools import count
|
||||
from os import listdir
|
||||
from os.path import isdir, join, isfile
|
||||
from scripts.commons.UI import UI
|
||||
from shutil import copy
|
||||
from stable_baselines3 import PPO
|
||||
from stable_baselines3.common.base_class import BaseAlgorithm
|
||||
from stable_baselines3.common.callbacks import EvalCallback, CheckpointCallback, CallbackList, BaseCallback
|
||||
from typing import Callable
|
||||
from world.World import World
|
||||
from xml.dom import minidom
|
||||
import numpy as np
|
||||
import os, time, math, csv, select, sys
|
||||
import pickle
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
class Train_Base():
|
||||
def __init__(self, script) -> None:
|
||||
'''
|
||||
When training with multiple environments (multiprocessing):
|
||||
The server port is incremented as follows:
|
||||
self.server_p, self.server_p+1, self.server_p+2, ...
|
||||
We add +1000 to the initial monitor port, so than we can have more than 100 environments:
|
||||
self.monitor_p+1000, self.monitor_p+1001, self.monitor_p+1002, ...
|
||||
When testing we use self.server_p and self.monitor_p
|
||||
'''
|
||||
|
||||
args = script.args
|
||||
self.script = script
|
||||
self.ip = args.i
|
||||
self.server_p = args.p # (initial) server port
|
||||
self.monitor_p = args.m # monitor port when testing
|
||||
self.monitor_p_1000 = args.m + 1000 # initial monitor port when training
|
||||
self.robot_type = args.r
|
||||
self.team = args.t
|
||||
self.uniform = args.u
|
||||
self.cf_last_time = 0
|
||||
self.cf_delay = 0
|
||||
self.cf_target_period = World.STEPTIME # target simulation speed while testing (default: real-time)
|
||||
|
||||
@staticmethod
|
||||
def prompt_user_for_model():
|
||||
|
||||
gyms_logs_path = "./scripts/gyms/logs/"
|
||||
folders = [f for f in listdir(gyms_logs_path) if isdir(join(gyms_logs_path, f))]
|
||||
folders.sort(key=lambda f: os.path.getmtime(join(gyms_logs_path, f)), reverse=True) # sort by modification date
|
||||
|
||||
while True:
|
||||
try:
|
||||
folder_name = UI.print_list(folders,prompt="Choose folder (ctrl+c to return): ")[1]
|
||||
except KeyboardInterrupt:
|
||||
print()
|
||||
return None # ctrl+c
|
||||
|
||||
folder_dir = os.path.join(gyms_logs_path, folder_name)
|
||||
models = [m[:-4] for m in listdir(folder_dir) if isfile(join(folder_dir, m)) and m.endswith(".zip")]
|
||||
|
||||
if not models:
|
||||
print("The chosen folder does not contain any .zip file!")
|
||||
continue
|
||||
|
||||
models.sort(key=lambda m: os.path.getmtime(join(folder_dir, m+".zip")), reverse=True) # sort by modification date
|
||||
|
||||
try:
|
||||
model_name = UI.print_list(models,prompt="Choose model (ctrl+c to return): ")[1]
|
||||
break
|
||||
except KeyboardInterrupt:
|
||||
print()
|
||||
|
||||
return {"folder_dir":folder_dir, "folder_name":folder_name, "model_file":os.path.join(folder_dir, model_name+".zip")}
|
||||
|
||||
|
||||
def control_fps(self, read_input = False):
|
||||
''' Add delay to control simulation speed '''
|
||||
|
||||
if read_input:
|
||||
speed = input()
|
||||
if speed == '':
|
||||
self.cf_target_period = 0
|
||||
print(f"Changed simulation speed to MAX")
|
||||
else:
|
||||
if speed == '0':
|
||||
inp = input("Paused. Set new speed or '' to use previous speed:")
|
||||
if inp != '':
|
||||
speed = inp
|
||||
|
||||
try:
|
||||
speed = int(speed)
|
||||
assert speed >= 0
|
||||
self.cf_target_period = World.STEPTIME * 100 / speed
|
||||
print(f"Changed simulation speed to {speed}%")
|
||||
except:
|
||||
print("""Train_Base.py:
|
||||
Error: To control the simulation speed, enter a non-negative integer.
|
||||
To disable this control module, use test_model(..., enable_FPS_control=False) in your gyms environment.""")
|
||||
|
||||
now = time.time()
|
||||
period = now - self.cf_last_time
|
||||
self.cf_last_time = now
|
||||
self.cf_delay += (self.cf_target_period - period)*0.9
|
||||
if self.cf_delay > 0:
|
||||
time.sleep(self.cf_delay)
|
||||
else:
|
||||
self.cf_delay = 0
|
||||
|
||||
|
||||
def test_model(self, model:BaseAlgorithm, env, log_path:str=None, model_path:str=None, max_episodes=0, enable_FPS_control=True, verbose=1):
|
||||
'''
|
||||
Test model and log results
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model : BaseAlgorithm
|
||||
Trained model
|
||||
env : Env
|
||||
Gym-like environment
|
||||
log_path : str
|
||||
Folder where statistics file is saved, default is `None` (no file is saved)
|
||||
model_path : str
|
||||
Folder where it reads evaluations.npz to plot it and create evaluations.csv, default is `None` (no plot, no csv)
|
||||
max_episodes : int
|
||||
Run tests for this number of episodes
|
||||
Default is 0 (run until user aborts)
|
||||
verbose : int
|
||||
0 - no output (except if enable_FPS_control=True)
|
||||
1 - print episode statistics
|
||||
'''
|
||||
|
||||
if model_path is not None:
|
||||
assert os.path.isdir(model_path), f"{model_path} is not a valid path"
|
||||
self.display_evaluations(model_path)
|
||||
|
||||
if log_path is not None:
|
||||
assert os.path.isdir(log_path), f"{log_path} is not a valid path"
|
||||
|
||||
# If file already exists, don't overwrite
|
||||
if os.path.isfile(log_path + "/test.csv"):
|
||||
for i in range(1000):
|
||||
p = f"{log_path}/test_{i:03}.csv"
|
||||
if not os.path.isfile(p):
|
||||
log_path = p
|
||||
break
|
||||
else:
|
||||
log_path += "/test.csv"
|
||||
|
||||
with open(log_path, 'w') as f:
|
||||
f.write("reward,ep. length,rew. cumulative avg., ep. len. cumulative avg.\n")
|
||||
print("Train statistics are saved to:", log_path)
|
||||
|
||||
if enable_FPS_control: # control simulation speed (using non blocking user input)
|
||||
print("\nThe simulation speed can be changed by sending a non-negative integer\n"
|
||||
"(e.g. '50' sets speed to 50%, '0' pauses the simulation, '' sets speed to MAX)\n")
|
||||
|
||||
ep_reward = 0
|
||||
ep_length = 0
|
||||
rewards_sum = 0
|
||||
reward_min = math.inf
|
||||
reward_max = -math.inf
|
||||
ep_lengths_sum = 0
|
||||
ep_no = 0
|
||||
|
||||
obs = env.reset()
|
||||
while True:
|
||||
action, _states = model.predict(obs, deterministic=True)
|
||||
obs, reward, done, info = env.step(action)
|
||||
ep_reward += reward
|
||||
ep_length += 1
|
||||
|
||||
if enable_FPS_control: # control simulation speed (using non blocking user input)
|
||||
self.control_fps(select.select([sys.stdin], [], [], 0)[0])
|
||||
|
||||
if done:
|
||||
obs = env.reset()
|
||||
rewards_sum += ep_reward
|
||||
ep_lengths_sum += ep_length
|
||||
reward_max = max(ep_reward, reward_max)
|
||||
reward_min = min(ep_reward, reward_min)
|
||||
ep_no += 1
|
||||
avg_ep_lengths = ep_lengths_sum/ep_no
|
||||
avg_rewards = rewards_sum/ep_no
|
||||
|
||||
if verbose > 0:
|
||||
print( f"\rEpisode: {ep_no:<3} Ep.Length: {ep_length:<4.0f} Reward: {ep_reward:<6.2f} \n",
|
||||
end=f"--AVERAGE-- Ep.Length: {avg_ep_lengths:<4.0f} Reward: {avg_rewards:<6.2f} (Min: {reward_min:<6.2f} Max: {reward_max:<6.2f})", flush=True)
|
||||
|
||||
if log_path is not None:
|
||||
with open(log_path, 'a') as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerow([ep_reward, ep_length, avg_rewards, avg_ep_lengths])
|
||||
|
||||
if ep_no == max_episodes:
|
||||
return
|
||||
|
||||
ep_reward = 0
|
||||
ep_length = 0
|
||||
|
||||
def learn_model(self, model:BaseAlgorithm, total_steps:int, path:str, eval_env=None, eval_freq=None, eval_eps=5, save_freq=None, backup_env_file=None, export_name=None):
|
||||
'''
|
||||
Learn Model for a specific number of time steps
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model : BaseAlgorithm
|
||||
Model to train
|
||||
total_steps : int
|
||||
The total number of samples (env steps) to train on
|
||||
path : str
|
||||
Path where the trained model is saved
|
||||
If the path already exists, an incrementing number suffix is added
|
||||
eval_env : Env
|
||||
Environment to periodically test the model
|
||||
Default is None (no periodical evaluation)
|
||||
eval_freq : int
|
||||
Evaluate the agent every X steps
|
||||
Default is None (no periodical evaluation)
|
||||
eval_eps : int
|
||||
Evaluate the agent for X episodes (both eval_env and eval_freq must be defined)
|
||||
Default is 5
|
||||
save_freq : int
|
||||
Saves model at every X steps
|
||||
Default is None (no periodical checkpoint)
|
||||
backup_gym_file : str
|
||||
Generates backup of environment file in model's folder
|
||||
Default is None (no backup)
|
||||
export_name : str
|
||||
If export_name and save_freq are defined, a model is exported every X steps
|
||||
Default is None (no export)
|
||||
|
||||
Returns
|
||||
-------
|
||||
model_path : str
|
||||
Directory where model was actually saved (considering incremental suffix)
|
||||
|
||||
Notes
|
||||
-----
|
||||
If `eval_env` and `eval_freq` were specified:
|
||||
- The policy will be evaluated in `eval_env` every `eval_freq` steps
|
||||
- Evaluation results will be saved in `path` and shown at the end of training
|
||||
- Every time the results improve, the model is saved
|
||||
'''
|
||||
|
||||
start = time.time()
|
||||
start_date = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
|
||||
|
||||
# If path already exists, add suffix to avoid overwriting
|
||||
if os.path.isdir(path):
|
||||
for i in count():
|
||||
p = path.rstrip("/")+f'_{i:03}/'
|
||||
if not os.path.isdir(p):
|
||||
path = p
|
||||
break
|
||||
os.makedirs(path)
|
||||
|
||||
# Backup environment file
|
||||
if backup_env_file is not None:
|
||||
backup_file = os.path.join(path, os.path.basename(backup_env_file))
|
||||
copy(backup_env_file, backup_file)
|
||||
|
||||
evaluate = bool(eval_env is not None and eval_freq is not None)
|
||||
|
||||
# Create evaluation callback
|
||||
eval_callback = None if not evaluate else EvalCallback(eval_env, n_eval_episodes=eval_eps, eval_freq=eval_freq, log_path=path,
|
||||
best_model_save_path=path, deterministic=True, render=False)
|
||||
|
||||
# Create custom callback to display evaluations
|
||||
custom_callback = None if not evaluate else Cyclic_Callback(eval_freq, lambda:self.display_evaluations(path,True))
|
||||
|
||||
# Create checkpoint callback
|
||||
checkpoint_callback = None if save_freq is None else CheckpointCallback(save_freq=save_freq, save_path=path, name_prefix="model", verbose=1)
|
||||
|
||||
# Create custom callback to export checkpoint models
|
||||
export_callback = None if save_freq is None or export_name is None else Export_Callback(save_freq, path, export_name)
|
||||
|
||||
callbacks = CallbackList([c for c in [eval_callback, custom_callback, checkpoint_callback, export_callback] if c is not None])
|
||||
|
||||
model.learn( total_timesteps=total_steps, callback=callbacks )
|
||||
model.save( os.path.join(path, "last_model") )
|
||||
|
||||
# Display evaluations if they exist
|
||||
if evaluate:
|
||||
self.display_evaluations(path)
|
||||
|
||||
# Display timestamps + Model path
|
||||
end_date = datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
||||
duration = timedelta(seconds=int(time.time()-start))
|
||||
print(f"Train start: {start_date}")
|
||||
print(f"Train end: {end_date}")
|
||||
print(f"Train duration: {duration}")
|
||||
print(f"Model path: {path}")
|
||||
|
||||
# Append timestamps to backup environment file
|
||||
if backup_env_file is not None:
|
||||
with open(backup_file, 'a') as f:
|
||||
f.write(f"\n# Train start: {start_date}\n")
|
||||
f.write( f"# Train end: {end_date}\n")
|
||||
f.write( f"# Train duration: {duration}")
|
||||
|
||||
return path
|
||||
|
||||
def display_evaluations(self, path, save_csv=False):
|
||||
|
||||
eval_npz = os.path.join(path, "evaluations.npz")
|
||||
|
||||
if not os.path.isfile(eval_npz):
|
||||
return
|
||||
|
||||
console_width = 80
|
||||
console_height = 18
|
||||
symb_x = "\u2022"
|
||||
symb_o = "\u007c"
|
||||
symb_xo = "\u237f"
|
||||
|
||||
with np.load(eval_npz) as data:
|
||||
time_steps = data["timesteps"]
|
||||
results_raw = np.mean(data["results"],axis=1)
|
||||
ep_lengths_raw = np.mean(data["ep_lengths"],axis=1)
|
||||
sample_no = len(results_raw)
|
||||
|
||||
xvals = np.linspace(0, sample_no-1, 80)
|
||||
results = np.interp(xvals, range(sample_no), results_raw)
|
||||
ep_lengths = np.interp(xvals, range(sample_no), ep_lengths_raw)
|
||||
|
||||
results_limits = np.min(results), np.max(results)
|
||||
ep_lengths_limits = np.min(ep_lengths), np.max(ep_lengths)
|
||||
|
||||
results_discrete = np.digitize(results, np.linspace(results_limits[0]-1e-5, results_limits[1]+1e-5, console_height+1))-1
|
||||
ep_lengths_discrete = np.digitize(ep_lengths, np.linspace(0, ep_lengths_limits[1]+1e-5, console_height+1))-1
|
||||
|
||||
matrix = np.zeros((console_height, console_width, 2), int)
|
||||
matrix[results_discrete[0] ][0][0] = 1 # draw 1st column
|
||||
matrix[ep_lengths_discrete[0]][0][1] = 1 # draw 1st column
|
||||
rng = [[results_discrete[0], results_discrete[0]], [ep_lengths_discrete[0], ep_lengths_discrete[0]]]
|
||||
|
||||
# Create continuous line for both plots
|
||||
for k in range(2):
|
||||
for i in range(1,console_width):
|
||||
x = [results_discrete, ep_lengths_discrete][k][i]
|
||||
if x > rng[k][1]:
|
||||
rng[k] = [rng[k][1]+1, x]
|
||||
elif x < rng[k][0]:
|
||||
rng[k] = [x, rng[k][0]-1]
|
||||
else:
|
||||
rng[k] = [x,x]
|
||||
for j in range(rng[k][0],rng[k][1]+1):
|
||||
matrix[j][i][k] = 1
|
||||
|
||||
print(f'{"-"*console_width}')
|
||||
for l in reversed(range(console_height)):
|
||||
for c in range(console_width):
|
||||
if np.all(matrix[l][c] == 0): print(end=" ")
|
||||
elif np.all(matrix[l][c] == 1): print(end=symb_xo)
|
||||
elif matrix[l][c][0] == 1: print(end=symb_x)
|
||||
else: print(end=symb_o)
|
||||
print()
|
||||
print(f'{"-"*console_width}')
|
||||
print(f"({symb_x})-reward min:{results_limits[0]:11.2f} max:{results_limits[1]:11.2f}")
|
||||
print(f"({symb_o})-ep. length min:{ep_lengths_limits[0]:11.0f} max:{ep_lengths_limits[1]:11.0f} {time_steps[-1]/1000:15.0f}k steps")
|
||||
print(f'{"-"*console_width}')
|
||||
|
||||
# save CSV
|
||||
if save_csv:
|
||||
eval_csv = os.path.join(path, "evaluations.csv")
|
||||
with open(eval_csv, 'a+') as f:
|
||||
writer = csv.writer(f)
|
||||
if sample_no == 1:
|
||||
writer.writerow(["time_steps", "reward ep.", "length"])
|
||||
writer.writerow([time_steps[-1],results_raw[-1],ep_lengths_raw[-1]])
|
||||
|
||||
|
||||
def generate_slot_behavior(self, path, slots, auto_head:bool, XML_name):
|
||||
'''
|
||||
Function that generates the XML file for the optimized slot behavior, overwriting previous files
|
||||
'''
|
||||
|
||||
file = os.path.join( path, XML_name )
|
||||
|
||||
# create the file structure
|
||||
auto_head = '1' if auto_head else '0'
|
||||
EL_behavior = ET.Element('behavior',{'description':'Add description to XML file', "auto_head":auto_head})
|
||||
|
||||
for i,s in enumerate(slots):
|
||||
EL_slot = ET.SubElement(EL_behavior, 'slot', {'name':str(i), 'delta':str(s[0]/1000)})
|
||||
for j in s[1]: # go through all joint indices
|
||||
ET.SubElement(EL_slot, 'move', {'id':str(j), 'angle':str(s[2][j])})
|
||||
|
||||
# create XML file
|
||||
xml_rough = ET.tostring( EL_behavior, 'utf-8' )
|
||||
xml_pretty = minidom.parseString(xml_rough).toprettyxml(indent=" ")
|
||||
with open(file, "w") as x:
|
||||
x.write(xml_pretty)
|
||||
|
||||
print(file, "was created!")
|
||||
|
||||
@staticmethod
|
||||
def linear_schedule(initial_value: float) -> Callable[[float], float]:
|
||||
'''
|
||||
Linear learning rate schedule
|
||||
|
||||
Parameters
|
||||
----------
|
||||
initial_value : float
|
||||
Initial learning rate
|
||||
|
||||
Returns
|
||||
-------
|
||||
schedule : Callable[[float], float]
|
||||
schedule that computes current learning rate depending on remaining progress
|
||||
'''
|
||||
def func(progress_remaining: float) -> float:
|
||||
'''
|
||||
Compute learning rate according to current progress
|
||||
|
||||
Parameters
|
||||
----------
|
||||
progress_remaining : float
|
||||
Progress will decrease from 1 (beginning) to 0
|
||||
|
||||
Returns
|
||||
-------
|
||||
learning_rate : float
|
||||
Learning rate according to current progress
|
||||
'''
|
||||
return progress_remaining * initial_value
|
||||
|
||||
return func
|
||||
|
||||
@staticmethod
|
||||
def export_model(input_file, output_file, add_sufix=True):
|
||||
'''
|
||||
Export model weights to binary file
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input_file : str
|
||||
Input file, compatible with algorithm
|
||||
output_file : str
|
||||
Output file, including directory
|
||||
add_sufix : bool
|
||||
If true, a suffix is appended to the file name: output_file + "_{index}.pkl"
|
||||
'''
|
||||
|
||||
# If file already exists, don't overwrite
|
||||
if add_sufix:
|
||||
for i in count():
|
||||
f = f"{output_file}_{i:03}.pkl"
|
||||
if not os.path.isfile(f):
|
||||
output_file = f
|
||||
break
|
||||
|
||||
model = PPO.load(input_file)
|
||||
weights = model.policy.state_dict() # dictionary containing network layers
|
||||
|
||||
w = lambda name : weights[name].detach().cpu().numpy() # extract weights from policy
|
||||
|
||||
var_list = []
|
||||
for i in count(0,2): # add hidden layers (step=2 because that's how SB3 works)
|
||||
if f"mlp_extractor.policy_net.{i}.bias" not in weights:
|
||||
break
|
||||
var_list.append([w(f"mlp_extractor.policy_net.{i}.bias"), w(f"mlp_extractor.policy_net.{i}.weight"), "tanh"])
|
||||
|
||||
var_list.append( [w("action_net.bias"), w("action_net.weight"), "none"] ) # add final layer
|
||||
|
||||
with open(output_file,"wb") as f:
|
||||
pickle.dump(var_list, f, protocol=4) # protocol 4 is backward compatible with Python 3.4
|
||||
|
||||
|
||||
|
||||
class Cyclic_Callback(BaseCallback):
|
||||
''' Stable baselines custom callback '''
|
||||
def __init__(self, freq, function):
|
||||
super(Cyclic_Callback, self).__init__(1)
|
||||
self.freq = freq
|
||||
self.function = function
|
||||
|
||||
def _on_step(self) -> bool:
|
||||
if self.n_calls % self.freq == 0:
|
||||
self.function()
|
||||
return True # If the callback returns False, training is aborted early
|
||||
|
||||
class Export_Callback(BaseCallback):
|
||||
''' Stable baselines custom callback '''
|
||||
def __init__(self, freq, load_path, export_name):
|
||||
super(Export_Callback, self).__init__(1)
|
||||
self.freq = freq
|
||||
self.load_path = load_path
|
||||
self.export_name = export_name
|
||||
|
||||
def _on_step(self) -> bool:
|
||||
if self.n_calls % self.freq == 0:
|
||||
path = os.path.join(self.load_path, f"model_{self.num_timesteps}_steps.zip")
|
||||
Train_Base.export_model(path, f"./scripts/gyms/export/{self.export_name}")
|
||||
return True # If the callback returns False, training is aborted early
|
||||
302
scripts/commons/UI.py
Normal file
302
scripts/commons/UI.py
Normal file
@@ -0,0 +1,302 @@
|
||||
from itertools import zip_longest
|
||||
from math import inf
|
||||
import math
|
||||
import numpy as np
|
||||
import shutil
|
||||
|
||||
class UI():
|
||||
console_width = 80
|
||||
console_height = 24
|
||||
|
||||
@staticmethod
|
||||
def read_particle(prompt, str_options, dtype=str, interval=[-inf,inf]):
|
||||
'''
|
||||
Read particle from user from a given dtype or from a str_options list
|
||||
|
||||
Parameters
|
||||
----------
|
||||
prompt : `str`
|
||||
prompt to show user before reading input
|
||||
str_options : `list`
|
||||
list of str options (in addition to dtype if dtype is not str)
|
||||
dtype : `class`
|
||||
if dtype is str, then user must choose a value from str_options, otherwise it can also send a dtype value
|
||||
interval : `list`
|
||||
[>=min,<max] interval for numeric dtypes
|
||||
|
||||
Returns
|
||||
-------
|
||||
choice : `int` or dtype
|
||||
index of str_options (int) or value (dtype)
|
||||
is_str_option : `bool`
|
||||
True if `choice` is an index from str_options
|
||||
'''
|
||||
# Check if user has no choice
|
||||
if dtype is str and len(str_options) == 1:
|
||||
print(prompt, str_options[0], sep="")
|
||||
return 0, True
|
||||
elif dtype is int and interval[0] == interval[1]-1:
|
||||
print(prompt, interval[0], sep="")
|
||||
return interval[0], False
|
||||
|
||||
while True:
|
||||
inp = input(prompt)
|
||||
if inp in str_options:
|
||||
return str_options.index(inp), True
|
||||
|
||||
if dtype is not str:
|
||||
try:
|
||||
inp = dtype(inp)
|
||||
if inp >= interval[0] and inp < interval[1]:
|
||||
return inp, False
|
||||
except:
|
||||
pass
|
||||
|
||||
print("Error: illegal input! Options:", str_options, f" or {dtype}" if dtype != str else "")
|
||||
|
||||
@staticmethod
|
||||
def read_int(prompt, min, max):
|
||||
'''
|
||||
Read int from user in a given interval
|
||||
:param prompt: prompt to show user before reading input
|
||||
:param min: minimum input (inclusive)
|
||||
:param max: maximum input (exclusive)
|
||||
:return: choice
|
||||
'''
|
||||
while True:
|
||||
inp = input(prompt)
|
||||
try:
|
||||
inp = int(inp)
|
||||
assert inp >= min and inp < max
|
||||
return inp
|
||||
except:
|
||||
print(f"Error: illegal input! Choose number between {min} and {max-1}")
|
||||
|
||||
@staticmethod
|
||||
def print_table(data, titles=None, alignment=None, cols_width=None, cols_per_title=None, margins=None, numbering=None, prompt=None):
|
||||
'''
|
||||
Print table
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : `list`
|
||||
list of columns, where each column is a list of items
|
||||
titles : `list`
|
||||
list of titles for each column, default is `None` (no titles)
|
||||
alignment : `list`
|
||||
list of alignments per column (excluding titles), default is `None` (left alignment for all cols)
|
||||
cols_width : `list`
|
||||
list of widths per column, default is `None` (fit to content)
|
||||
Positive values indicate a fixed column width
|
||||
Zero indicates that the column will fit its content
|
||||
cols_per_title : `list`
|
||||
maximum number of subcolumns per title, default is `None` (1 subcolumn per title)
|
||||
margins : `list`
|
||||
number of added leading and trailing spaces per column, default is `None` (margin=2 for all columns)
|
||||
numbering : `list`
|
||||
list of booleans per columns, indicating whether to assign numbers to each option
|
||||
prompt : `str`
|
||||
the prompt string, if given, is printed after the table before reading input
|
||||
|
||||
Returns
|
||||
-------
|
||||
index : `int`
|
||||
returns global index of selected item (relative to table)
|
||||
col_index : `int`
|
||||
returns local index of selected item (relative to column)
|
||||
column : `int`
|
||||
returns number of column of selected item (starts at 0)
|
||||
* if `numbering` or `prompt` are `None`, `None` is returned
|
||||
|
||||
|
||||
Example
|
||||
-------
|
||||
titles = ["Name","Age"]
|
||||
data = [[John,Graciete], [30,50]]
|
||||
alignment = ["<","^"] # 1st column is left-aligned, 2nd is centered
|
||||
cols_width = [10,5] # 1st column's width=10, 2nd column's width=5
|
||||
margins = [3,3]
|
||||
numbering = [True,False] # prints: [0-John,1-Graciete][30,50]
|
||||
prompt = "Choose a person:"
|
||||
'''
|
||||
|
||||
#--------------------------------------------- parameters
|
||||
cols_no = len(data)
|
||||
|
||||
if alignment is None:
|
||||
alignment = ["<"]*cols_no
|
||||
|
||||
if cols_width is None:
|
||||
cols_width = [0]*cols_no
|
||||
|
||||
if numbering is None:
|
||||
numbering = [False]*cols_no
|
||||
any_numbering = False
|
||||
else:
|
||||
any_numbering = True
|
||||
|
||||
if margins is None:
|
||||
margins = [2]*cols_no
|
||||
|
||||
# Fit column to content + margin, if required
|
||||
subcol = [] # subcolumn length and widths
|
||||
for i in range(cols_no):
|
||||
subcol.append([[],[]])
|
||||
if cols_width[i] == 0:
|
||||
numbering_width = 4 if numbering[i] else 0
|
||||
if cols_per_title is None or cols_per_title[i] < 2:
|
||||
cols_width[i] = max([len(str(item))+numbering_width for item in data[i]]) + margins[i]*2
|
||||
else:
|
||||
subcol[i][0] = math.ceil(len(data[i])/cols_per_title[i]) # subcolumn maximum length
|
||||
cols_per_title[i] = math.ceil(len(data[i])/subcol[i][0]) # reduce number of columns as needed
|
||||
cols_width[i] = margins[i]*(1+cols_per_title[i]) - (1 if numbering[i] else 0) # remove one if numbering, same as when printing
|
||||
for j in range(cols_per_title[i]):
|
||||
subcol_data_width = max([len(str(item))+numbering_width for item in data[i][j*subcol[i][0]:j*subcol[i][0]+subcol[i][0]]])
|
||||
cols_width[i] += subcol_data_width # add subcolumn data width to column width
|
||||
subcol[i][1].append(subcol_data_width) # save subcolumn data width
|
||||
|
||||
if titles is not None: # expand to acomodate titles if needed
|
||||
cols_width[i] = max(cols_width[i], len(titles[i]) + margins[i]*2 )
|
||||
|
||||
if any_numbering:
|
||||
no_of_items=0
|
||||
cumulative_item_per_col=[0] # useful for getting the local index
|
||||
for i in range(cols_no):
|
||||
assert type(data[i]) == list, "In function 'print_table', 'data' must be a list of lists!"
|
||||
|
||||
if numbering[i]:
|
||||
data[i] = [f"{n+no_of_items:3}-{d}" for n,d in enumerate(data[i])]
|
||||
no_of_items+=len(data[i])
|
||||
cumulative_item_per_col.append(no_of_items)
|
||||
|
||||
table_width = sum(cols_width)+cols_no-1
|
||||
|
||||
#--------------------------------------------- col titles
|
||||
print(f'{"="*table_width}')
|
||||
if titles is not None:
|
||||
for i in range(cols_no):
|
||||
print(f'{titles[i]:^{cols_width[i]}}', end='|' if i < cols_no - 1 else '')
|
||||
print()
|
||||
for i in range(cols_no):
|
||||
print(f'{"-"*cols_width[i]}', end='+' if i < cols_no - 1 else '')
|
||||
print()
|
||||
|
||||
#--------------------------------------------- merge subcolumns
|
||||
if cols_per_title is not None:
|
||||
for i,col in enumerate(data):
|
||||
if cols_per_title[i] < 2:
|
||||
continue
|
||||
for k in range(subcol[i][0]): # create merged items
|
||||
col[k] = (" "*margins[i]).join( f'{col[item]:{alignment[i]}{subcol[i][1][subcol_idx]}}'
|
||||
for subcol_idx, item in enumerate(range(k,len(col),subcol[i][0])) )
|
||||
del col[subcol[i][0]:] # delete repeated items
|
||||
|
||||
#--------------------------------------------- col items
|
||||
for line in zip_longest(*data):
|
||||
for i,item in enumerate(line):
|
||||
l_margin = margins[i]-1 if numbering[i] else margins[i] # adjust margins when there are numbered options
|
||||
item = "" if item is None else f'{" "*l_margin}{item}{" "*margins[i]}' # add margins
|
||||
print(f'{item:{alignment[i]}{cols_width[i]}}', end='')
|
||||
if i < cols_no - 1:
|
||||
print(end='|')
|
||||
print(end="\n")
|
||||
print(f'{"="*table_width}')
|
||||
|
||||
#--------------------------------------------- prompt
|
||||
if prompt is None:
|
||||
return None
|
||||
|
||||
if not any_numbering:
|
||||
print(prompt)
|
||||
return None
|
||||
|
||||
index = UI.read_int(prompt, 0, no_of_items)
|
||||
|
||||
for i,n in enumerate(cumulative_item_per_col):
|
||||
if index < n:
|
||||
return index, index-cumulative_item_per_col[i-1], i-1
|
||||
|
||||
raise ValueError('Failed to catch illegal input')
|
||||
|
||||
|
||||
@staticmethod
|
||||
def print_list(data, numbering=True, prompt=None, divider=" | ", alignment="<", min_per_col=6):
|
||||
'''
|
||||
Print list - prints list, using as many columns as possible
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : `list`
|
||||
list of items
|
||||
numbering : `bool`
|
||||
assigns number to each option
|
||||
prompt : `str`
|
||||
the prompt string, if given, is printed after the table before reading input
|
||||
divider : `str`
|
||||
string that divides columns
|
||||
alignment : `str`
|
||||
f-string style alignment ( '<', '>', '^' )
|
||||
min_per_col : int
|
||||
avoid splitting columns with fewer items
|
||||
|
||||
Returns
|
||||
-------
|
||||
item : `int`, item
|
||||
returns tuple with global index of selected item and the item object,
|
||||
or `None` (if `numbering` or `prompt` are `None`)
|
||||
|
||||
'''
|
||||
|
||||
WIDTH = shutil.get_terminal_size()[0]
|
||||
|
||||
data_size = len(data)
|
||||
items = []
|
||||
items_len = []
|
||||
|
||||
#--------------------------------------------- Add numbers, margins and divider
|
||||
for i in range(data_size):
|
||||
number = f"{i}-" if numbering else ""
|
||||
items.append( f"{divider}{number}{data[i]}" )
|
||||
items_len.append( len(items[-1]) )
|
||||
|
||||
max_cols = np.clip((WIDTH+len(divider)) // min(items_len),1,math.ceil(data_size/max(min_per_col,1))) # width + len(divider) because it is not needed in last col
|
||||
|
||||
#--------------------------------------------- Check maximum number of columns, considering content width (min:1)
|
||||
for i in range(max_cols,0,-1):
|
||||
cols_width = []
|
||||
cols_items = []
|
||||
table_width = 0
|
||||
a,b = divmod(data_size,i)
|
||||
for col in range(i):
|
||||
start = a*col + min(b,col)
|
||||
end = start+a+(1 if col<b else 0)
|
||||
cols_items.append( items[start:end] )
|
||||
col_width = max(items_len[start:end])
|
||||
cols_width.append( col_width )
|
||||
table_width += col_width
|
||||
if table_width <= WIDTH+len(divider):
|
||||
break
|
||||
table_width -= len(divider)
|
||||
|
||||
#--------------------------------------------- Print columns
|
||||
print("="*table_width)
|
||||
for row in range(math.ceil(data_size / i)):
|
||||
for col in range(i):
|
||||
content = cols_items[col][row] if len(cols_items[col]) > row else divider # print divider when there are no items
|
||||
if col == 0:
|
||||
l = len(divider)
|
||||
print(end=f"{content[l:]:{alignment}{cols_width[col]-l}}") # remove divider from 1st col
|
||||
else:
|
||||
print(end=f"{content :{alignment}{cols_width[col] }}")
|
||||
print()
|
||||
print("="*table_width)
|
||||
|
||||
#--------------------------------------------- Prompt
|
||||
if prompt is None:
|
||||
return None
|
||||
|
||||
if numbering is None:
|
||||
return None
|
||||
else:
|
||||
idx = UI.read_int( prompt, 0, data_size )
|
||||
return idx, data[idx]
|
||||
BIN
scripts/commons/__pycache__/Script.cpython-313.pyc
Normal file
BIN
scripts/commons/__pycache__/Script.cpython-313.pyc
Normal file
Binary file not shown.
BIN
scripts/commons/__pycache__/Server.cpython-313.pyc
Normal file
BIN
scripts/commons/__pycache__/Server.cpython-313.pyc
Normal file
Binary file not shown.
BIN
scripts/commons/__pycache__/Train_Base.cpython-313.pyc
Normal file
BIN
scripts/commons/__pycache__/Train_Base.cpython-313.pyc
Normal file
Binary file not shown.
BIN
scripts/commons/__pycache__/UI.cpython-313.pyc
Normal file
BIN
scripts/commons/__pycache__/UI.cpython-313.pyc
Normal file
Binary file not shown.
Reference in New Issue
Block a user