You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Dribble/scripts/gyms/sprint.py

422 lines
18 KiB
Python

import math
import random
import time
from agent.Base_Agent import Base_Agent as Agent
from behaviors.custom.Step.Step import Step
from world.commons.Draw import Draw
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import SubprocVecEnv
from scripts.commons.Server import Server
from scripts.commons.Train_Base import Train_Base
from time import sleep
import os, gym
import numpy as np
from math_ops.Math_Ops import Math_Ops as U
from math_ops.Math_Ops import Math_Ops as M
from behaviors.custom.Step.Step_Generator import Step_Generator
'''
Objective:
Learn how to run forward using step primitive
----------
- class Basic_Run: implements an OpenAI custom gym
- class Train: implements algorithms to train a new model or test an existing model
'''
class sprint(gym.Env):
def __init__(self, ip, server_p, monitor_p, r_type, enable_draw) -> None:
self.Gen_player_pos = None
self.internal_target = None
self.values_l = None
self.values_r = None
self.reset_time = None
self.behavior = None
self.bias_dir = None
self.robot_type = r_type
self.kick_ori = 0
self.terminal = False
# Args: Server IP, Agent Port, Monitor Port, Uniform No., Robot Type, Team Name, Enable Log, Enable Draw
self.player = Agent(ip, server_p, monitor_p, 1, self.robot_type, "Gym", True, enable_draw)
self.step_counter = 0 # to limit episode size
self.ik = self.player.inv_kinematics
# Step behavior defaults
self.STEP_DUR = 10
self.STEP_Z_SPAN = 0.2
self.STEP_Z_MAX = 0.7
nao_specs = self.ik.NAO_SPECS
self.leg_length = nao_specs[1] + nao_specs[3] # upper leg height + lower leg height
feet_y_dev = nao_specs[0] * 2 # wider step
sample_time = self.player.world.robot.STEPTIME
max_ankle_z = nao_specs[5] * 1.8
self.step_generator = Step_Generator(feet_y_dev, sample_time, max_ankle_z)
self.DEFAULT_ARMS = np.array([-90, -90, 8, 8, 90, 90, 70, 70], np.float32)
self.walk_rel_orientation = None
self.walk_rel_target = None
self.walk_target = None
self.walk_distance = None
self.act = np.zeros(16, np.float32) # memory variable
# State space
obs_size = 63
self.obs = np.zeros(obs_size, np.float32)
self.observation_space = gym.spaces.Box(low=np.full(obs_size, -np.inf, np.float32),
high=np.full(obs_size, np.inf, np.float32), dtype=np.float32)
# Action space
MAX = np.finfo(np.float32).max
self.no_of_actions = act_size = 16
self.action_space = gym.spaces.Box(low=np.full(act_size, -MAX, np.float32),
high=np.full(act_size, MAX, np.float32), dtype=np.float32)
# Place ball far away to keep landmarks in FoV (head follows ball while using Step behavior)
self.player.scom.unofficial_move_ball((14, 0, 0.042))
self.ball_pos = np.array([0, 0, 0])
self.player.scom.unofficial_set_play_mode("PlayOn")
self.player.scom.unofficial_move_ball((0, 0, 0))
self.gait: Step_Generator = self.player.behavior.get_custom_behavior_object("Walk").env.step_generator
self.last_target_update_time = time.time()
def observe(self, init=False):
r = self.player.world.robot
if init: # reset variables
self.act = np.zeros(16, np.float32) # memory variable
self.step_counter = 0
# index observation naive normalization
self.obs[0] = min(self.step_counter, 15 * 8) / 100 # simple counter: 0,1,2,3...
self.obs[1] = r.loc_head_z * 3 # z coordinate (torso)
self.obs[2] = r.loc_head_z_vel / 2 # z velocity (torso)
self.obs[3] = r.imu_torso_roll / 15 # absolute torso roll in deg
self.obs[4] = r.imu_torso_pitch / 15 # absolute torso pitch in deg
self.obs[5:8] = r.gyro / 100 # gyroscope
self.obs[8:11] = r.acc / 10 # accelerometer
self.obs[11:17] = r.frp.get('lf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01,
0.01) # left foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
self.obs[17:23] = r.frp.get('rf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01,
0.01) # right foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
# *if foot is not touching the ground, then (px=0,py=0,pz=0,fx=0,fy=0,fz=0)
# Joints: Forward kinematics for ankles + feet rotation + arms (pitch + roll)
rel_lankle = self.player.inv_kinematics.get_body_part_pos_relative_to_hip(
"lankle") # ankle position relative to center of both hip joints
rel_rankle = self.player.inv_kinematics.get_body_part_pos_relative_to_hip(
"rankle") # ankle position relative to center of both hip joints
lf = r.head_to_body_part_transform("torso", r.body_parts['lfoot'].transform) # foot transform relative to torso
rf = r.head_to_body_part_transform("torso", r.body_parts['rfoot'].transform) # foot transform relative to torso
lf_rot_rel_torso = np.array(
[lf.get_roll_deg(), lf.get_pitch_deg(), lf.get_yaw_deg()]) # foot rotation relative to torso
rf_rot_rel_torso = np.array(
[rf.get_roll_deg(), rf.get_pitch_deg(), rf.get_yaw_deg()]) # foot rotation relative to torso
# pose
self.obs[23:26] = rel_lankle * (8, 8, 5)
self.obs[26:29] = rel_rankle * (8, 8, 5)
self.obs[29:32] = lf_rot_rel_torso / 20
self.obs[32:35] = rf_rot_rel_torso / 20
self.obs[35:39] = r.joints_position[14:18] / 100 # arms (pitch + roll)
# velocity
self.obs[39:55] = r.joints_target_last_speed[2:18] # predictions == last action
'''
Expected observations for walking state:
Time step R 0 1 2 3 4 5 6 7 0
Progress 1 0 .14 .28 .43 .57 .71 .86 1 0
Left leg active T F F F F F F F F T
'''
if init: # the walking parameters refer to the last parameters in effect (after a reset, they are pointless)
self.obs[55] = 1 # step progress
self.obs[56] = 1 # 1 if left leg is active
self.obs[57] = 0 # 1 if right leg is active
else:
self.obs[55] = self.step_generator.external_progress # step progress
self.obs[56] = float(self.step_generator.state_is_left_active) # 1 if left leg is active
self.obs[57] = float(not self.step_generator.state_is_left_active) # 1 if right leg is active
'''
Create internal target with a smoother variation
'''
MAX_LINEAR_DIST = 0.5
MAX_LINEAR_DIFF = 0.014 # max difference (meters) per step
MAX_ROTATION_DIFF = 1.6 # max difference (degrees) per step
MAX_ROTATION_DIST = 45
if init:
self.internal_rel_orientation = 0
self.internal_target = np.zeros(2)
previous_internal_target = np.copy(self.internal_target)
# ---------------------------------------------------------------- compute internal linear target
rel_raw_target_size = np.linalg.norm(self.walk_rel_target)
if rel_raw_target_size == 0:
rel_target = self.walk_rel_target
else:
rel_target = self.walk_rel_target / rel_raw_target_size * min(self.walk_distance, MAX_LINEAR_DIST)
internal_diff = rel_target - self.internal_target
internal_diff_size = np.linalg.norm(internal_diff)
if internal_diff_size > MAX_LINEAR_DIFF:
self.internal_target += internal_diff * (MAX_LINEAR_DIFF / internal_diff_size)
else:
self.internal_target[:] = rel_target
# ---------------------------------------------------------------- compute internal rotation target
internal_ori_diff = np.clip(M.normalize_deg(self.walk_rel_orientation - self.internal_rel_orientation),
-MAX_ROTATION_DIFF, MAX_ROTATION_DIFF)
self.internal_rel_orientation = np.clip(M.normalize_deg(self.internal_rel_orientation + internal_ori_diff),
-MAX_ROTATION_DIST, MAX_ROTATION_DIST)
# ----------------------------------------------------------------- observations
internal_target_vel = self.internal_target - previous_internal_target
self.obs[58] = self.internal_target[0] / MAX_LINEAR_DIST
self.obs[59] = self.internal_target[1] / MAX_LINEAR_DIST
self.obs[60] = self.internal_rel_orientation / MAX_ROTATION_DIST
self.obs[61] = internal_target_vel[0] / MAX_LINEAR_DIFF
self.obs[62] = internal_target_vel[0] / MAX_LINEAR_DIFF
return self.obs
def execute_ik(self, l_pos, l_rot, r_pos, r_rot):
r = self.player.world.robot
# Apply IK to each leg + Set joint targets
# Left leg
indices, self.values_l, error_codes = (self.ik.leg(l_pos, l_rot, True, dynamic_pose=False))
r.set_joints_target_position_direct(indices, self.values_l, harmonize=False)
# Right leg
indices, self.values_r, error_codes = self.ik.leg(r_pos, r_rot, False, dynamic_pose=False)
r.set_joints_target_position_direct(indices, self.values_r, harmonize=False)
def sync(self):
''' Run a single simulation step '''
r = self.player.world.robot
self.player.scom.commit_and_send(r.get_command())
self.player.scom.receive()
def reset(self):
# print("reset")
'''
Reset and stabilize the robot
Note: for some behaviors it would be better to reduce stabilization or add noise
'''
self.player.scom.unofficial_set_play_mode("PlayOn")
Gen_ball_pos = [15, 0, 0]
self.Gen_player_pos = (random.random() * 3 - 15, 10 - random.random() * 20, 0.5)
self.ball_pos = np.array(Gen_ball_pos)
self.player.scom.unofficial_move_ball((Gen_ball_pos[0], Gen_ball_pos[1], Gen_ball_pos[2]))
self.step_counter = 0
self.behavior = self.player.behavior
r = self.player.world.robot
w = self.player.world
t = w.time_local_ms
self.reset_time = t
self.generate_random_target()
distance = np.linalg.norm(self.walk_target[:2] - self.Gen_player_pos[:2])
self.walk_distance = distance
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]),
-r.imu_torso_orientation)
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target)
for _ in range(25):
self.player.scom.unofficial_beam(self.Gen_player_pos, 0) # beam player continuously (floating above ground)
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# beam player to ground
self.player.scom.unofficial_beam(self.Gen_player_pos, 0)
r.joints_target_speed[
0] = 0.01 # move head to trigger physics update (rcssserver3d bug when no joint is moving)
self.sync()
# stabilize on ground
for _ in range(7):
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# walk to ball
while True:
if w.time_local_ms - self.reset_time > 2500 and not self.gait.state_is_left_active and self.gait.state_current_ts == 2:
break
else:
if self.player.behavior.is_ready("Get_Up"):
self.player.behavior.execute_to_completion("Get_Up")
reset_walk = self.behavior.previous_behavior != "Walk" # reset walk if it wasn't the previous behavior
self.behavior.execute_sub_behavior("Walk", reset_walk, self.walk_rel_target, True, None, True,
None) # target, is_target_abs, ori, is_ori_abs, distance
self.sync()
self.act = np.zeros(self.no_of_actions, np.float32)
return self.observe(True)
def render(self, mode='human', close=False):
return
def close(self):
Draw.clear_all()
self.player.terminate()
def generate_random_target(self, x_range=(-12, 12), y_range=(-9, 9)):
x = np.random.uniform(x_range[0], x_range[1])
y = np.random.uniform(y_range[0], y_range[1])
if np.linalg.norm(np.array([x, y]) - self.Gen_player_pos[:2]) < 5:
dir_x = (x - self.Gen_player_pos[0]) / abs (x - self.Gen_player_pos[0])
dir_y = (y - self.Gen_player_pos[1]) / abs (y - self.Gen_player_pos[1])
x = x + 5 * dir_x
y = y + 5 * dir_y
x = np.clip(x, -15, 15)
y = np.clip(y, -15, 15)
self.walk_target = np.array([x, y])
def step(self, action):
r = (self.
player.world.robot)
w = self.player.world
internal_dist = np.linalg.norm(self.internal_target)
action_mult = 1 if internal_dist > 0.2 else (0.7 / 0.2) * internal_dist + 0.3
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]), -r.imu_torso_orientation)
self.walk_distance = np.linalg.norm(self.walk_target[:2] - self.Gen_player_pos[:2])
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target) * 0.3
# exponential moving average
self.act = 0.8 * self.act + 0.2 * action * action_mult * 0.7
# execute Step behavior to extract the target positions of each leg (we will override these targets)
lfy, lfz, rfy, rfz = self.step_generator.get_target_positions(self.step_counter == 0, self.STEP_DUR,
self.STEP_Z_SPAN,
self.leg_length * self.STEP_Z_MAX)
# Leg IK
a = self.act
l_ankle_pos = (a[0] * 0.02, max(0.01, a[1] * 0.02 + lfy), a[2] * 0.01 + lfz) # limit y to avoid self collision
r_ankle_pos = (a[3] * 0.02, min(a[4] * 0.02 + rfy, -0.01), a[5] * 0.01 + rfz) # limit y to avoid self collision
l_foot_rot = a[6:9] * (3, 3, 5)
r_foot_rot = a[9:12] * (3, 3, 5)
# Limit leg yaw/pitch
l_foot_rot[2] = max(0, l_foot_rot[2] + 7)
r_foot_rot[2] = min(0, r_foot_rot[2] - 7)
# Arms actions
arms = np.copy(self.DEFAULT_ARMS) # default arms pose
arm_swing = math.sin(self.step_generator.state_current_ts / self.STEP_DUR * math.pi) * 6
inv = 1 if self.step_generator.state_is_left_active else -1
arms[0:4] += a[12:16] * 4 + (-arm_swing * inv, arm_swing * inv, 0, 0) # arms pitch+roll
# Set target positions
self.execute_ik(l_ankle_pos, l_foot_rot, r_ankle_pos, r_foot_rot) # legs
r.set_joints_target_position_direct(slice(14, 22), arms, harmonize=False) # arms
self.sync()
self.step_counter += 1
obs = self.observe()
robot_speed = r.loc_torso_velocity[0]
direction_error = abs(self.walk_rel_orientation)
direction_error = min(direction_error, 10)
reward = robot_speed * (1.5 - direction_error / 10)
if self.walk_distance < 0.5:
reward += 20
self.generate_random_target()
if self.player.behavior.is_ready("Get_Up"):
self.terminal = True
elif w.time_local_ms - self.reset_time > 100000:
self.terminal = True
else:
self.terminal = False
return obs, reward, self.terminal, {}
class Train(Train_Base):
def __init__(self, script) -> None:
super().__init__(script)
def train(self, args):
# --------------------------------------- Learning parameters
n_envs = min(12, os.cpu_count())
n_steps_per_env = 1024 # RolloutBuffer is of size (n_steps_per_env * n_envs)
minibatch_size = 64 # should be a factor of (n_steps_per_env * n_envs)
total_steps = 50000000
learning_rate = 3e-4
folder_name = f'Sprint_R{self.robot_type}'
model_path = f'./scripts/gyms/logs/{folder_name}/'
# print("Model path:", model_path)
# --------------------------------------- Run algorithm
def init_env(i_env):
def thunk():
return sprint(self.ip, self.server_p + i_env, self.monitor_p_1000 + i_env, self.robot_type, False)
return thunk
servers = Server(self.server_p, self.monitor_p_1000, n_envs + 1) # include 1 extra server for testing
env = SubprocVecEnv([init_env(i) for i in range(n_envs)])
eval_env = SubprocVecEnv([init_env(n_envs)])
try:
if "model_file" in args: # retrain
model = PPO.load(args["model_file"], env=env, device="cuda", n_envs=n_envs, n_steps=n_steps_per_env,
batch_size=minibatch_size, learning_rate=learning_rate)
else: # train new model
model = PPO("MlpPolicy", env=env, verbose=1, n_steps=n_steps_per_env, batch_size=minibatch_size,
learning_rate=learning_rate, device="cuda")
model_path = self.learn_model(model, total_steps, model_path, eval_env=eval_env,
eval_freq=n_steps_per_env * 20, save_freq=n_steps_per_env * 200,
backup_env_file=__file__)
except KeyboardInterrupt:
sleep(1) # wait for child processes
print("\nctrl+c pressed, aborting...\n")
servers.kill()
return
env.close()
eval_env.close()
servers.kill()
def test(self, args):
# Uses different server and monitor ports
server = Server(self.server_p - 1, self.monitor_p, 1)
env = sprint(self.ip, self.server_p - 1, self.monitor_p, self.robot_type, True)
model = PPO.load(args["model_file"], env=env)
try:
self.export_model(args["model_file"], args["model_file"] + ".pkl",
False) # Export to pkl to create custom behavior
self.test_model(model, env, log_path=args["folder_dir"], model_path=args["folder_dir"])
except KeyboardInterrupt:
print()
env.close()
server.kill()