You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

44 lines
1.8 KiB
Python

from agent.Base_Agent import Base_Agent
from math_ops.Math_Ops import Math_Ops as M
from math_ops.Neural_Network import run_mlp
import pickle, numpy as np
class Fall():
def __init__(self, base_agent : Base_Agent) -> None:
self.world = base_agent.world
self.description = "Fall example"
self.auto_head = False
with open(M.get_active_directory("/behaviors/custom/Fall/fall.pkl"), 'rb') as f:
self.model = pickle.load(f)
self.action_size = len(self.model[-1][0]) # extracted from size of Neural Network's last layer bias
self.obs = np.zeros(self.action_size+1, np.float32)
self.controllable_joints = min(self.world.robot.no_of_joints, self.action_size) # compatibility between different robot types
def observe(self):
r = self.world.robot
for i in range(self.action_size):
self.obs[i] = r.joints_position[i] / 100 # naive scale normalization
self.obs[self.action_size] = r.cheat_abs_pos[2] # head.z (alternative: r.loc_head_z)
def execute(self,reset) -> bool:
self.observe()
action = run_mlp(self.obs, self.model)
self.world.robot.set_joints_target_position_direct( # commit actions:
slice(self.controllable_joints), # act on trained joints
action*10, # scale actions up to motivate early exploration
harmonize=False # there is no point in harmonizing actions if the targets change at every step
)
return self.world.robot.loc_head_z < 0.15 # finished when head height < 0.15 m
def is_ready(self) -> any:
''' Returns True if this behavior is ready to start/continue under current game/robot conditions '''
return True