|
|
|
@ -233,7 +233,7 @@ class sprint(gym.Env):
|
|
|
|
|
w = self.player.world
|
|
|
|
|
t = w.time_local_ms
|
|
|
|
|
self.reset_time = t
|
|
|
|
|
self.generate_random_target()
|
|
|
|
|
self.generate_random_target(self.Gen_player_pos[:2])
|
|
|
|
|
distance = np.linalg.norm(self.walk_target[:2] - self.Gen_player_pos[:2])
|
|
|
|
|
self.walk_distance = distance
|
|
|
|
|
self.walk_rel_target = M.rotate_2d_vec(
|
|
|
|
@ -283,13 +283,12 @@ class sprint(gym.Env):
|
|
|
|
|
self.player.terminate()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_random_target(self, x_range=(-15, 15), y_range=(-10, 10)):
|
|
|
|
|
r = self.player.world.robot
|
|
|
|
|
def generate_random_target(self, position, x_range=(-15, 15), y_range=(-10, 10)):
|
|
|
|
|
while True:
|
|
|
|
|
x = np.random.uniform(x_range[0], x_range[1])
|
|
|
|
|
y = np.random.uniform(y_range[0], y_range[1])
|
|
|
|
|
|
|
|
|
|
if np.linalg.norm(np.array([x, y]) - r.loc_head_position[:2]) >= 15:
|
|
|
|
|
if np.linalg.norm(np.array([x, y]) - position) >= 10:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
self.walk_target = np.array([x, y])
|
|
|
|
@ -303,13 +302,13 @@ class sprint(gym.Env):
|
|
|
|
|
action_mult = 1 if internal_dist > 0.2 else (0.7 / 0.2) * internal_dist + 0.3
|
|
|
|
|
self.walk_rel_target = M.rotate_2d_vec(
|
|
|
|
|
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]), -r.imu_torso_orientation)
|
|
|
|
|
self.walk_distance = np.linalg.norm(self.walk_target[:2] - r.loc_head_position[:2])
|
|
|
|
|
if self.walk_distance < 0.5:
|
|
|
|
|
self.generate_random_target()
|
|
|
|
|
self.walk_distance = np.linalg.norm(self.walk_target - r.loc_head_position[:2])
|
|
|
|
|
if self.walk_distance <= 0.5:
|
|
|
|
|
self.generate_random_target(r.loc_head_position[:2])
|
|
|
|
|
self.walk_rel_target = M.rotate_2d_vec(
|
|
|
|
|
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]),
|
|
|
|
|
-r.imu_torso_orientation)
|
|
|
|
|
self.walk_distance = np.linalg.norm(self.walk_target[:2] - r.loc_head_position[:2])
|
|
|
|
|
self.walk_distance = np.linalg.norm(self.walk_target - r.loc_head_position[:2])
|
|
|
|
|
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target) * 0.3
|
|
|
|
|
# exponential moving average
|
|
|
|
|
self.act = 0.8 * self.act + 0.2 * action * action_mult * 0.7
|
|
|
|
@ -344,15 +343,13 @@ class sprint(gym.Env):
|
|
|
|
|
obs = self.observe()
|
|
|
|
|
robot_speed = np.linalg.norm(r.loc_torso_velocity[:2])
|
|
|
|
|
direction_error = abs(self.walk_rel_orientation)
|
|
|
|
|
direction_error = min(direction_error, 20)
|
|
|
|
|
reward = robot_speed * (1 - direction_error / 20)
|
|
|
|
|
if self.walk_distance < 0.8:
|
|
|
|
|
direction_error = min(direction_error, 10)
|
|
|
|
|
reward = robot_speed * (1 - direction_error / 10) * 0.6
|
|
|
|
|
if self.walk_distance < 0.5:
|
|
|
|
|
reward += 10
|
|
|
|
|
|
|
|
|
|
if self.player.behavior.is_ready("Get_Up"):
|
|
|
|
|
self.terminal = True
|
|
|
|
|
elif w.time_local_ms - self.reset_time > 300000:
|
|
|
|
|
self.terminal = True
|
|
|
|
|
else:
|
|
|
|
|
self.terminal = False
|
|
|
|
|
return obs, reward, self.terminal, {}
|
|
|
|
|