sprint
Her-darling 2 months ago
parent 4569c0a6ed
commit a7ecf50a00

@ -282,7 +282,6 @@ class sprint(gym.Env):
Draw.clear_all()
self.player.terminate()
def generate_random_target(self, position):
while True:
angle = np.random.uniform(0, 2 * np.pi)
@ -312,7 +311,7 @@ class sprint(gym.Env):
self.walk_distance = np.linalg.norm(self.walk_target - r.loc_head_position[:2])
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target) * 0.3
# exponential moving average
self.act = 0.8 * self.act + 0.2 * action * action_mult * 0.7
self.act = 0.6 * self.act + 0.4 * action
# execute Step behavior to extract the target positions of each leg (we will override these targets)
lfy, lfz, rfy, rfz = self.step_generator.get_target_positions(self.step_counter == 0, self.STEP_DUR,
@ -363,9 +362,9 @@ class Train(Train_Base):
def train(self, args):
# --------------------------------------- Learning parameters
n_envs = min(12, os.cpu_count())
n_envs = min(10, os.cpu_count())
n_steps_per_env = 1024 # RolloutBuffer is of size (n_steps_per_env * n_envs)
minibatch_size = 64 # should be a factor of (n_steps_per_env * n_envs)
minibatch_size = 256 # should be a factor of (n_steps_per_env * n_envs)
total_steps = 50000000
learning_rate = 3e-4
folder_name = f'Sprint_R{self.robot_type}'

@ -322,7 +322,9 @@ class sprint(gym.Env):
self.sync()
self.step_counter += 1
obs = self.observe()
reward = r.loc_torso_velocity[0] - r.loc_torso_velocity[1] * 0.2
direction_error = abs(self.walk_rel_orientation)
direction_error = min(direction_error, 10)
reward = (r.loc_torso_velocity[0] - r.loc_torso_velocity[1] * 0.2) * (1 - direction_error / 10)
if self.player.behavior.is_ready("Get_Up"):
self.terminal = True

Loading…
Cancel
Save