sprint
Her-darling 2 months ago
parent 5dbbf571d1
commit 57b1496ff6

@ -1,6 +1,6 @@
import math
import random
import time
from agent.Base_Agent import Base_Agent as Agent
from behaviors.custom.Step.Step import Step
from world.commons.Draw import Draw
@ -11,6 +11,7 @@ from scripts.commons.Train_Base import Train_Base
from time import sleep
import os, gym
import numpy as np
from math_ops.Math_Ops import Math_Ops as U
from math_ops.Math_Ops import Math_Ops as M
from behaviors.custom.Step.Step_Generator import Step_Generator
@ -40,7 +41,6 @@ class sprint(gym.Env):
self.player = Agent(ip, server_p, monitor_p, 1, self.robot_type, "Gym", True, enable_draw)
self.step_counter = 0 # to limit episode size
self.ik = self.player.inv_kinematics
self.target = None
# Step behavior defaults
self.STEP_DUR = 10
@ -53,9 +53,10 @@ class sprint(gym.Env):
max_ankle_z = nao_specs[5] * 1.8
self.step_generator = Step_Generator(feet_y_dev, sample_time, max_ankle_z)
self.DEFAULT_ARMS = np.array([-90, -90, 8, 8, 90, 90, 70, 70], np.float32)
self.path_manager = self.player.path_manager
self.walk_rel_orientation = None
self.walk_rel_target = None
self.walk_target = None
self.walk_distance = None
self.act = np.zeros(16, np.float32) # memory variable
@ -79,6 +80,7 @@ class sprint(gym.Env):
self.player.scom.unofficial_move_ball((0, 0, 0))
self.gait: Step_Generator = self.player.behavior.get_custom_behavior_object("Walk").env.step_generator
self.last_target_update_time = time.time()
def observe(self, init=False):
r = self.player.world.robot
@ -231,11 +233,13 @@ class sprint(gym.Env):
w = self.player.world
t = w.time_local_ms
self.reset_time = t
self.target = np.array([10, 0])
self.walk_rel_target = self.path_manager.get_path_to_target(target=self.target)[0]
self.walk_distance = self.path_manager.get_path_to_target(target=self.target)[2]
self.walk_rel_orientation = (self.path_manager.get_path_to_target(target=self.target)[1]) * 0.3
self.generate_random_target(self.Gen_player_pos[:2])
distance = np.linalg.norm(self.walk_target[:2] - self.Gen_player_pos[:2])
self.walk_distance = distance
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]),
-r.imu_torso_orientation)
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target)
for _ in range(25):
self.player.scom.unofficial_beam(self.Gen_player_pos, 0) # beam player continuously (floating above ground)
@ -278,15 +282,16 @@ class sprint(gym.Env):
Draw.clear_all()
self.player.terminate()
def generate_random_target(self, position, x_range=(-15, 15), y_range=(-10, 10)):
while True:
x = np.random.uniform(x_range[0], x_range[1])
y = np.random.uniform(y_range[0], y_range[1])
if np.linalg.norm(np.array([x, y]) - position[:2]) >= 10:
if np.linalg.norm(np.array([x, y]) - position) >= 10:
break
self.target = np.array([x, y])
self.walk_target = np.array([x, y])
def step(self, action):
r = (self.
@ -295,14 +300,16 @@ class sprint(gym.Env):
w = self.player.world
internal_dist = np.linalg.norm(self.internal_target)
action_mult = 1 if internal_dist > 0.2 else (0.7 / 0.2) * internal_dist + 0.3
# self.walk_rel_target = M.rotate_2d_vec(
# (self.target[0] - r.loc_head_position[0], self.target[1] - r.loc_head_position[1]),
# -r.imu_torso_orientation)
# self.walk_distance = np.linalg.norm(self.walk_rel_target)
# self.walk_rel_orientation = M.vector_angle(self.walk_rel_target) * 0.5
self.walk_rel_target = self.path_manager.get_path_to_target(target=self.target)[0]
self.walk_distance = self.path_manager.get_path_to_target(target=self.target)[2]
self.walk_rel_orientation = (self.path_manager.get_path_to_target(target=self.target)[1] - r.imu_torso_orientation) * 0.3
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]), -r.imu_torso_orientation)
self.walk_distance = np.linalg.norm(self.walk_target - r.loc_head_position[:2])
if self.walk_distance <= 0.5:
self.generate_random_target(r.loc_head_position[:2])
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]),
-r.imu_torso_orientation)
self.walk_distance = np.linalg.norm(self.walk_target - r.loc_head_position[:2])
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target) * 0.3
# exponential moving average
self.act = 0.8 * self.act + 0.2 * action * action_mult * 0.7
@ -334,22 +341,18 @@ class sprint(gym.Env):
self.sync()
self.step_counter += 1
obs = self.observe()
robot_speed = np.linalg.norm(r.loc_torso_velocity[:2])
direction_error = abs(self.walk_rel_orientation)
direction_error = min(direction_error, 10)
reward = np.linalg.norm(r.loc_torso_velocity[:2])**2 * (1 - direction_error/10) * 0.1
if np.linalg.norm(self.target - r.loc_head_position[:2]) < 0.3:
reward += 50
self.generate_random_target(self.target)
reward = robot_speed**2 * (1 - direction_error / 10) * 0.2
if self.walk_distance < 0.5:
reward += 10
if self.player.behavior.is_ready("Get_Up"):
self.terminal = True
elif w.time_local_ms - self.reset_time > 25000 * 2:
self.terminal = True
else:
self.terminal = False
return obs, reward, self.terminal, {}
class Train(Train_Base):
def __init__(self, script) -> None:
super().__init__(script)

@ -1,6 +1,6 @@
import math
import random
import time
from agent.Base_Agent import Base_Agent as Agent
from behaviors.custom.Step.Step import Step
from world.commons.Draw import Draw
@ -37,7 +37,6 @@ class sprint(gym.Env):
self.robot_type = r_type
self.kick_ori = 0
self.terminal = False
self.distance = None
# Args: Server IP, Agent Port, Monitor Port, Uniform No., Robot Type, Team Name, Enable Log, Enable Draw
self.player = Agent(ip, server_p, monitor_p, 1, self.robot_type, "Gym", True, enable_draw)
self.step_counter = 0 # to limit episode size
@ -57,7 +56,6 @@ class sprint(gym.Env):
self.walk_rel_orientation = None
self.walk_rel_target = None
self.walk_target = None
self.walk_distance = None
self.act = np.zeros(16, np.float32) # memory variable
@ -81,7 +79,6 @@ class sprint(gym.Env):
self.player.scom.unofficial_move_ball((0, 0, 0))
self.gait: Step_Generator = self.player.behavior.get_custom_behavior_object("Walk").env.step_generator
self.last_target_update_time = time.time()
def observe(self, init=False):
r = self.player.world.robot
@ -234,12 +231,10 @@ class sprint(gym.Env):
w = self.player.world
t = w.time_local_ms
self.reset_time = t
self.generate_random_target(self.Gen_player_pos[:2])
distance = np.linalg.norm(self.walk_target[:2] - self.Gen_player_pos[:2])
distance = 15 - r.loc_head_position[0]
self.walk_rel_target = (15, self.Gen_player_pos[1])
self.walk_distance = distance
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]),
-r.imu_torso_orientation)
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target)
for _ in range(25):
@ -283,16 +278,6 @@ class sprint(gym.Env):
Draw.clear_all()
self.player.terminate()
def generate_random_target(self, position, x_range=(-15, 15), y_range=(-10, 10)):
while True:
x = np.random.uniform(x_range[0], x_range[1])
y = np.random.uniform(y_range[0], y_range[1])
if np.linalg.norm(np.array([x, y]) - position) >= 10:
break
self.walk_target = np.array([x, y])
def step(self, action):
r = (self.
@ -302,17 +287,10 @@ class sprint(gym.Env):
internal_dist = np.linalg.norm(self.internal_target)
action_mult = 1 if internal_dist > 0.2 else (0.7 / 0.2) * internal_dist + 0.3
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]), -r.imu_torso_orientation)
self.distance = np.linalg.norm(self.walk_target - r.loc_head_position[:2])
(15 - r.loc_head_position[0], self.Gen_player_pos[1] - r.loc_head_position[1]), -r.imu_torso_orientation)
self.walk_distance = np.linalg.norm(self.walk_rel_target)
if self.distance <= 0.5:
self.generate_random_target(r.loc_head_position[:2])
self.walk_rel_target = M.rotate_2d_vec(
(self.walk_target[0] - r.loc_head_position[0], self.walk_target[1] - r.loc_head_position[1]),
-r.imu_torso_orientation)
self.distance = np.linalg.norm(self.walk_target - r.loc_head_position[:2])
self.walk_distance = np.linalg.norm(self.walk_rel_target)
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target) * 0.3
# exponential moving average
self.act = 0.8 * self.act + 0.2 * action * action_mult * 0.7
@ -344,18 +322,20 @@ class sprint(gym.Env):
self.sync()
self.step_counter += 1
obs = self.observe()
robot_speed = np.linalg.norm(r.loc_torso_velocity[:2])
direction_error = abs(self.walk_rel_orientation)
direction_error = min(direction_error, 10)
reward = robot_speed * (1 - direction_error / 10) * 0.6
if self.distance < 0.5:
reward += 10
reward = r.loc_torso_velocity[0] - r.loc_torso_velocity[1] * 0.2
if self.player.behavior.is_ready("Get_Up"):
self.terminal = True
elif w.time_local_ms - self.reset_time > 7500 * 2:
self.terminal = True
elif r.loc_torso_position[0] > 14.5:
self.terminal = True
reward += 500
else:
self.terminal = False
return obs, reward, self.terminal, {}
class Train(Train_Base):
def __init__(self, script) -> None:
super().__init__(script)

Loading…
Cancel
Save