new sprint_demo.py

sprint
Her-darling 24 hours ago
parent fac8cb7e94
commit 3896946280

@ -1,6 +1,6 @@
import math
import random
import time
from agent.Base_Agent import Base_Agent as Agent
from behaviors.custom.Step.Step import Step
from world.commons.Draw import Draw
@ -79,6 +79,7 @@ class sprint(gym.Env):
self.player.scom.unofficial_move_ball((0, 0, 0))
self.gait: Step_Generator = self.player.behavior.get_custom_behavior_object("Walk").env.step_generator
self.last_target_update_time = time.time()
def observe(self, init=False):
r = self.player.world.robot
@ -278,12 +279,29 @@ class sprint(gym.Env):
Draw.clear_all()
self.player.terminate()
def change_target(self):
original_angle = M.vector_angle(self.walk_rel_target)
random_angle_delta = np.random.uniform(-10, 10)
new_angle = (original_angle + np.radians(random_angle_delta)) * 3 * math.sin(time.time())
new_walk_rel_target = np.array([
np.cos(new_angle) * self.walk_distance,
np.sin(new_angle) * self.walk_distance
])
self.walk_rel_target = new_walk_rel_target
def step(self, action):
r = (self.
player.world.robot)
w = self.player.world
current_time = time.time()
if current_time - self.last_target_update_time > 1:
self.change_target()
self.last_target_update_time = current_time
internal_dist = np.linalg.norm(self.internal_target)
action_mult = 1 if internal_dist > 0.2 else (0.7 / 0.2) * internal_dist + 0.3
self.walk_rel_target = M.rotate_2d_vec(
@ -292,7 +310,7 @@ class sprint(gym.Env):
self.walk_rel_orientation = M.vector_angle(self.walk_rel_target) * 0.3
# exponential moving average
self.act = 0.6 * self.act + 0.4 * action
self.act = 0.7 * self.act + 0.3 * action_mult * 0.7
# execute Step behavior to extract the target positions of each leg (we will override these targets)
lfy, lfz, rfy, rfz = self.step_generator.get_target_positions(self.step_counter == 0, self.STEP_DUR,
@ -322,22 +340,22 @@ class sprint(gym.Env):
self.sync()
self.step_counter += 1
obs = self.observe()
robot_speed = r.loc_torso_velocity[0]
direction_error = abs(self.walk_rel_orientation)
direction_error = min(direction_error, 10)
reward = (r.loc_torso_velocity[0] - r.loc_torso_velocity[1] * 0.2) * (1 - direction_error / 10)
reward = robot_speed * (1 - direction_error / 10)
if self.player.behavior.is_ready("Get_Up"):
self.terminal = True
elif w.time_local_ms - self.reset_time > 7500 * 2:
elif w.time_local_ms - self.reset_time > 30000:
self.terminal = True
elif r.loc_torso_position[0] > 14.5:
self.terminal = True
reward += 500
elif r.loc_torso_position[0] > 0:
reward += 3 * r.loc_torso_position[0]
else:
self.terminal = False
return obs, reward, self.terminal, {}
class Train(Train_Base):
def __init__(self, script) -> None:
super().__init__(script)

Loading…
Cancel
Save