You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.7 KiB
C
91 lines
3.7 KiB
C
9 months ago
|
/**
|
||
|
* FILENAME: FieldNoise
|
||
|
* DESCRIPTION: efficient computation of relative probabilities (for the noise model of the RoboCup 3DSSL)
|
||
|
* AUTHOR: Miguel Abreu (m.abreu@fe.up.pt)
|
||
|
* DATE: 2021
|
||
|
*/
|
||
|
|
||
|
#pragma once
|
||
|
#include "math.h"
|
||
|
|
||
|
class FieldNoise{
|
||
|
public:
|
||
|
|
||
|
/**
|
||
|
* Log probability of real distance d, given noisy radius r
|
||
|
*/
|
||
|
static double log_prob_r(double d, double r);
|
||
|
|
||
|
/**
|
||
|
* Log probability of real horizontal angle h, given noisy angle phi
|
||
|
*/
|
||
|
static double log_prob_h(double h, double phi);
|
||
|
|
||
|
/**
|
||
|
* Log probability of real vertical angle v, given noisy angle theta
|
||
|
*/
|
||
|
static double log_prob_v(double v, double theta);
|
||
|
|
||
|
|
||
|
private:
|
||
|
|
||
|
FieldNoise(){}; //Disable construction
|
||
|
|
||
|
/**
|
||
|
* Log probability of normally distributed random variable X from interval1 to interval2:
|
||
|
* Log Pr[interval1 < X < interval2]
|
||
|
* @param mean mean of random variable
|
||
|
* @param std standard deviation of random variable
|
||
|
* @param interval1 minimum value of random variable
|
||
|
* @param interval2 maximum value of random variable
|
||
|
*/
|
||
|
static double log_prob_normal_distribution(double mean, double std, double interval1, double interval2);
|
||
|
|
||
|
/**
|
||
|
* This function returns ln(1-sgn(a)*erf(a)), but sgn(a)*erf(a) = |erf(a)|, because sgn(a) == sgn(erf(a))
|
||
|
* So, it returns: ln(1-|erf(a)|), which is <=0
|
||
|
*
|
||
|
* NOTE: condition to guarantee high precision: |a|>= 1
|
||
|
*
|
||
|
* how to compute erf(a) ?
|
||
|
* erf(a) = sgn(a)(1-e^erf_aux(a))
|
||
|
*
|
||
|
* how to compute erf(a)+erf(b) ?
|
||
|
* erf(a)+erf(b) = sgn(a)(1-e^erf_aux(a)) + sgn(b)(1-e^erf_aux(b))
|
||
|
* assuming a<0 and b>0:
|
||
|
* = e^erf_aux(a) -1 + 1 - e^erf_aux(b)
|
||
|
* = e^erf_aux(a) - e^erf_aux(b)
|
||
|
*
|
||
|
* example: erf(-7)+erf(7.1)
|
||
|
* if we computed it directly:
|
||
|
* erf(-7)+erf(7.1) = -0.9999999(...) + 0.9999999(...) = -1+1 = 0 (due to lack of precision, even if using double)
|
||
|
* if we use the proposed method:
|
||
|
* e^erf_aux(-7) - e^erf_aux(7.1) = -1.007340e-23 - -4.183826e-23 = 3.176486E-23
|
||
|
*
|
||
|
* how to compute ln(erf(a)+erf(b)) ?
|
||
|
* assuming a<0 and b>0:
|
||
|
* ln(erf(a)+erf(b)) = ln( exp(erf_aux(a)) - exp(erf_aux(b)) )
|
||
|
* = ln( exp(erf_aux(a)-k) - exp(erf_aux(b)-k) ) + k
|
||
|
* where k = min(erf_aux(a), erf_aux(b))
|
||
|
*
|
||
|
* how to compute ln(erf(a)-erf(b)) ? (the difference is just the assumption)
|
||
|
* assuming a*b >= 0
|
||
|
*
|
||
|
* ln(erf(a)-erf(b)) = ln( sgn(a)(1-e^erf_aux(a)) - sgn(a)(1-e^erf_aux(b)) ), note that sgn(a)=sgn(b)
|
||
|
*
|
||
|
* rule: log( exp(a) - exp(b) ) = log( exp(a-k) - exp(b-k) ) + k
|
||
|
*
|
||
|
* if(a>0)
|
||
|
* ln(erf(a)-erf(b)) = ln( 1 - e^erf_aux(a) - 1 + e^erf_aux(b))
|
||
|
* = ln( exp(erf_aux(b)) - exp(erf_aux(a)) )
|
||
|
* = ln( exp(erf_aux(b)-erf_aux(b)) - exp(erf_aux(a)-erf_aux(b)) ) + erf_aux(b)
|
||
|
* = ln( 1 - exp(erf_aux(a)-erf_aux(b)) ) + erf_aux(b)
|
||
|
* if(a<0)
|
||
|
* ln(erf(a)-erf(b)) = ln( -1 + e^erf_aux(a) + 1 - e^erf_aux(b))
|
||
|
* = ln( exp(erf_aux(a)) - exp(erf_aux(b)) )
|
||
|
* = ln( exp(erf_aux(a)-erf_aux(a)) - exp(erf_aux(b)-erf_aux(a)) ) + erf_aux(a)
|
||
|
* = ln( 1 - exp(erf_aux(b)-erf_aux(a)) ) + erf_aux(a)
|
||
|
*
|
||
|
*/
|
||
|
static double erf_aux(double a);
|
||
|
};
|