You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Dribble/scripts/gyms/Basic_Run.py

282 lines
12 KiB
Python

9 months ago
import gymnasium as gym
import os
from time import sleep
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import SubprocVecEnv
from agent.Base_Agent import Base_Agent as Agent
from behaviors.custom.Step.Step import Step
from scripts.commons.Server import Server
from scripts.commons.Train_Base import Train_Base
from world.commons.Draw import Draw
'''
Objective:
Learn how to run forward using step primitive
----------
- class Basic_Run: implements an OpenAI custom gym
- class Train: implements algorithms to train a new model or test an existing model
'''
class Basic_Run(gym.Env):
def __init__(self, ip, server_p, monitor_p, r_type, enable_draw) -> None:
self.robot_type = r_type
# Args: Server IP, Agent Port, Monitor Port, Uniform No., Robot Type, Team Name, Enable Log, Enable Draw
self.player = Agent(ip, server_p, monitor_p, 1, self.robot_type, "Gym", True, enable_draw)
self.step_counter = 0 # to limit episode size
self.step_obj : Step = self.player.behavior.get_custom_behavior_object("Step") # Step behavior object
# State space
obs_size = 70
self.obs = np.zeros(obs_size, np.float32)
self.observation_space = gym.spaces.Box(low=np.full(obs_size,-np.inf,np.float32), high=np.full(obs_size,np.inf,np.float32), dtype=np.float32)
# Action space
MAX = np.finfo(np.float32).max
self.no_of_actions = act_size = 22
self.action_space = gym.spaces.Box(low=np.full(act_size,-MAX,np.float32), high=np.full(act_size,MAX,np.float32), dtype=np.float32)
# Step behavior defaults
self.step_default_dur = 7
self.step_default_z_span = 0.035
self.step_default_z_max = 0.70
# Place ball far away to keep landmarks in FoV (head follows ball while using Step behavior)
self.player.scom.unofficial_move_ball((14, 0, 0.042))
def observe(self, init=False):
r = self.player.world.robot
# index observation naive normalization
self.obs[0] = self.step_counter /100 # simple counter: 0,1,2,3...
self.obs[1] = r.loc_head_z *3 # z coordinate (torso)
self.obs[2] = r.loc_head_z_vel /2 # z velocity (torso)
self.obs[3] = r.imu_torso_orientation /50 # absolute orientation in deg
self.obs[4] = r.imu_torso_roll /15 # absolute torso roll in deg
self.obs[5] = r.imu_torso_pitch /15 # absolute torso pitch in deg
self.obs[6:9] = r.gyro /100 # gyroscope
self.obs[9:12] = r.acc /10 # accelerometer
self.obs[12:18] = r.frp.get('lf', (0,0,0,0,0,0)) # left foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
self.obs[18:24] = r.frp.get('rf', (0,0,0,0,0,0)) # right foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
self.obs[15:18] /= 100 # naive normalization of force vector
self.obs[21:24] /= 100 # naive normalization of force vector
self.obs[24:44] = r.joints_position[2:22] /100 # position of all joints except head & toes (for robot type 4)
self.obs[44:64] = r.joints_speed[2:22] /6.1395 # speed of all joints except head & toes (for robot type 4)
# *if foot is not touching the ground, then (px=0,py=0,pz=0,fx=0,fy=0,fz=0)
if init: # the walking parameters refer to the last parameters in effect (after a reset, they are pointless)
self.obs[64] = self.step_default_dur /10 # step duration in time steps
self.obs[65] = self.step_default_z_span *20 # vertical movement span
self.obs[66] = self.step_default_z_max # relative extension of support leg
self.obs[67] = 1 # step progress
self.obs[68] = 1 # 1 if left leg is active
self.obs[69] = 0 # 1 if right leg is active
else:
self.obs[64] = self.step_obj.step_generator.ts_per_step /10 # step duration in time steps
self.obs[65] = self.step_obj.step_generator.swing_height *20 # vertical movement span
self.obs[66] = self.step_obj.step_generator.max_leg_extension / self.step_obj.leg_length # relative extension of support leg
self.obs[67] = self.step_obj.step_generator.external_progress # step progress
self.obs[68] = float(self.step_obj.step_generator.state_is_left_active) # 1 if left leg is active
self.obs[69] = float(not self.step_obj.step_generator.state_is_left_active) # 1 if right leg is active
'''
Expected observations for walking parameters/state (example):
Time step R 0 1 2 0 1 2 3 4
Progress 1 0 .5 1 0 .25 .5 .75 1
Left leg active T F F F T T T T T
Parameters A A A B B B B B C
Example note: (A) has a step duration of 3ts, (B) has a step duration of 5ts
'''
return self.obs
def sync(self):
''' Run a single simulation step '''
r = self.player.world.robot
self.player.scom.commit_and_send( r.get_command() )
self.player.scom.receive()
def reset(self):
'''
Reset and stabilize the robot
Note: for some behaviors it would be better to reduce stabilization or add noise
'''
self.step_counter = 0
r = self.player.world.robot
for _ in range(25):
self.player.scom.unofficial_beam((-14,0,0.50),0) # beam player continuously (floating above ground)
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# beam player to ground
self.player.scom.unofficial_beam((-14,0,r.beam_height),0)
r.joints_target_speed[0] = 0.01 # move head to trigger physics update (rcssserver3d bug when no joint is moving)
self.sync()
# stabilize on ground
for _ in range(7):
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# memory variables
self.lastx = r.cheat_abs_pos[0]
self.act = np.zeros(self.no_of_actions,np.float32)
return self.observe(True)
def render(self, mode='human', close=False):
return
def close(self):
Draw.clear_all()
self.player.terminate()
def step(self, action):
r = self.player.world.robot
# exponential moving average
self.act = 0.4 * self.act + 0.6 * action
# execute Step behavior to extract the target positions of each leg (we will override these targets)
if self.step_counter == 0:
'''
The first time step will change the parameters of the next footstep
It uses default parameters so that the agent can anticipate the next generated pose
Reason: the agent decides the parameters during the previous footstep
'''
self.player.behavior.execute("Step", self.step_default_dur, self.step_default_z_span, self.step_default_z_max)
else:
step_zsp = np.clip(self.step_default_z_span + self.act[20]/300, 0, 0.07)
step_zmx = np.clip(self.step_default_z_max + self.act[21]/30, 0.6, 0.9)
self.player.behavior.execute("Step", self.step_default_dur, step_zsp, step_zmx)
# add action as residuals to Step behavior (the index of these actions is not the typical index because both head joints are excluded)
new_action = self.act[:20] * 2 # scale up actions to motivate exploration
new_action[[0,2,4,6,8,10]] += self.step_obj.values_l
new_action[[1,3,5,7,9,11]] += self.step_obj.values_r
new_action[12] -= 90 # arms down
new_action[13] -= 90 # arms down
new_action[16] += 90 # untwist arms
new_action[17] += 90 # untwist arms
new_action[18] += 90 # elbows at 90 deg
new_action[19] += 90 # elbows at 90 deg
r.set_joints_target_position_direct( # commit actions:
slice(2,22), # act on all joints except head & toes (for robot type 4)
new_action, # target joint positions
harmonize=False # there is no point in harmonizing actions if the targets change at every step
)
self.sync() # run simulation step
self.step_counter += 1
reward = r.cheat_abs_pos[0] - self.lastx
self.lastx = r.cheat_abs_pos[0]
# terminal state: the robot is falling or timeout
terminal = r.cheat_abs_pos[2] < 0.3 or self.step_counter > 300
return self.observe(), reward, terminal, {}
class Train(Train_Base):
def __init__(self, script) -> None:
super().__init__(script)
def train(self, args):
#--------------------------------------- Learning parameters
n_envs = min(16, os.cpu_count())
n_steps_per_env = 1024 # RolloutBuffer is of size (n_steps_per_env * n_envs)
minibatch_size = 64 # should be a factor of (n_steps_per_env * n_envs)
total_steps = 30000000
learning_rate = 3e-4
folder_name = f'Basic_Run_R{self.robot_type}'
model_path = f'./scripts/gyms/logs/{folder_name}/'
print("Model path:", model_path)
#--------------------------------------- Run algorithm
def init_env(i_env):
def thunk():
return Basic_Run( self.ip , self.server_p + i_env, self.monitor_p_1000 + i_env, self.robot_type, False )
return thunk
servers = Server( self.server_p, self.monitor_p_1000, n_envs+1 ) #include 1 extra server for testing
env = SubprocVecEnv( [init_env(i) for i in range(n_envs)] )
eval_env = SubprocVecEnv( [init_env(n_envs)] )
try:
if "model_file" in args: # retrain
model = PPO.load( args["model_file"], env=env, device="cpu", n_envs=n_envs, n_steps=n_steps_per_env, batch_size=minibatch_size, learning_rate=learning_rate )
else: # train new model
model = PPO( "MlpPolicy", env=env, verbose=1, n_steps=n_steps_per_env, batch_size=minibatch_size, learning_rate=learning_rate, device="cpu" )
model_path = self.learn_model( model, total_steps, model_path, eval_env=eval_env, eval_freq=n_steps_per_env*20, save_freq=n_steps_per_env*200, backup_env_file=__file__ )
except KeyboardInterrupt:
sleep(1) # wait for child processes
print("\nctrl+c pressed, aborting...\n")
servers.kill()
return
env.close()
eval_env.close()
servers.kill()
def test(self, args):
# Uses different server and monitor ports
server = Server( self.server_p-1, self.monitor_p, 1 )
env = Basic_Run( self.ip, self.server_p-1, self.monitor_p, self.robot_type, True )
model = PPO.load( args["model_file"], env=env )
try:
self.export_model( args["model_file"], args["model_file"]+".pkl", False ) # Export to pkl to create custom behavior
self.test_model( model, env, log_path=args["folder_dir"], model_path=args["folder_dir"] )
except KeyboardInterrupt:
print()
env.close()
server.kill()
'''
The learning process takes several hours.
A video with the results can be seen at:
https://imgur.com/a/dC2V6Et
Stats:
- Avg. reward: 7.7
- Avg. ep. length: 5.5s (episode is limited to 6s)
- Max. reward: 9.3 (speed: 1.55m/s)
State space:
- Composed of all joint positions + torso height
- Stage of the underlying Step behavior
Reward:
- Displacement in the x-axis (it can be negative)
- Note that cheat and visual data is only updated every 3 steps
'''