You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
494 lines
20 KiB
Python
494 lines
20 KiB
Python
9 months ago
|
from datetime import datetime, timedelta
|
||
|
from itertools import count
|
||
|
from os import listdir
|
||
|
from os.path import isdir, join, isfile
|
||
|
from scripts.commons.UI import UI
|
||
|
from shutil import copy
|
||
|
from stable_baselines3 import PPO
|
||
|
from stable_baselines3.common.base_class import BaseAlgorithm
|
||
|
from stable_baselines3.common.callbacks import EvalCallback, CheckpointCallback, CallbackList, BaseCallback
|
||
|
from typing import Callable
|
||
|
from world.World import World
|
||
|
from xml.dom import minidom
|
||
|
import numpy as np
|
||
|
import os, time, math, csv, select, sys
|
||
|
import pickle
|
||
|
import xml.etree.ElementTree as ET
|
||
|
|
||
|
|
||
|
class Train_Base():
|
||
|
def __init__(self, script) -> None:
|
||
|
'''
|
||
|
When training with multiple environments (multiprocessing):
|
||
|
The server port is incremented as follows:
|
||
|
self.server_p, self.server_p+1, self.server_p+2, ...
|
||
|
We add +1000 to the initial monitor port, so than we can have more than 100 environments:
|
||
|
self.monitor_p+1000, self.monitor_p+1001, self.monitor_p+1002, ...
|
||
|
When testing we use self.server_p and self.monitor_p
|
||
|
'''
|
||
|
|
||
|
args = script.args
|
||
|
self.script = script
|
||
|
self.ip = args.i
|
||
|
self.server_p = args.p # (initial) server port
|
||
|
self.monitor_p = args.m # monitor port when testing
|
||
|
self.monitor_p_1000 = args.m + 1000 # initial monitor port when training
|
||
|
self.robot_type = args.r
|
||
|
self.team = args.t
|
||
|
self.uniform = args.u
|
||
|
self.cf_last_time = 0
|
||
|
self.cf_delay = 0
|
||
|
self.cf_target_period = World.STEPTIME # target simulation speed while testing (default: real-time)
|
||
|
|
||
|
@staticmethod
|
||
|
def prompt_user_for_model():
|
||
|
|
||
|
gyms_logs_path = "./scripts/gyms/logs/"
|
||
|
folders = [f for f in listdir(gyms_logs_path) if isdir(join(gyms_logs_path, f))]
|
||
|
folders.sort(key=lambda f: os.path.getmtime(join(gyms_logs_path, f)), reverse=True) # sort by modification date
|
||
|
|
||
|
while True:
|
||
|
try:
|
||
|
folder_name = UI.print_list(folders,prompt="Choose folder (ctrl+c to return): ")[1]
|
||
|
except KeyboardInterrupt:
|
||
|
print()
|
||
|
return None # ctrl+c
|
||
|
|
||
|
folder_dir = os.path.join(gyms_logs_path, folder_name)
|
||
|
models = [m[:-4] for m in listdir(folder_dir) if isfile(join(folder_dir, m)) and m.endswith(".zip")]
|
||
|
|
||
|
if not models:
|
||
|
print("The chosen folder does not contain any .zip file!")
|
||
|
continue
|
||
|
|
||
|
models.sort(key=lambda m: os.path.getmtime(join(folder_dir, m+".zip")), reverse=True) # sort by modification date
|
||
|
|
||
|
try:
|
||
|
model_name = UI.print_list(models,prompt="Choose model (ctrl+c to return): ")[1]
|
||
|
break
|
||
|
except KeyboardInterrupt:
|
||
|
print()
|
||
|
|
||
|
return {"folder_dir":folder_dir, "folder_name":folder_name, "model_file":os.path.join(folder_dir, model_name+".zip")}
|
||
|
|
||
|
|
||
|
def control_fps(self, read_input = False):
|
||
|
''' Add delay to control simulation speed '''
|
||
|
|
||
|
if read_input:
|
||
|
speed = input()
|
||
|
if speed == '':
|
||
|
self.cf_target_period = 0
|
||
|
print(f"Changed simulation speed to MAX")
|
||
|
else:
|
||
|
if speed == '0':
|
||
|
inp = input("Paused. Set new speed or '' to use previous speed:")
|
||
|
if inp != '':
|
||
|
speed = inp
|
||
|
|
||
|
try:
|
||
|
speed = int(speed)
|
||
|
assert speed >= 0
|
||
|
self.cf_target_period = World.STEPTIME * 100 / speed
|
||
|
print(f"Changed simulation speed to {speed}%")
|
||
|
except:
|
||
|
print("""Train_Base.py:
|
||
|
Error: To control the simulation speed, enter a non-negative integer.
|
||
|
To disable this control module, use test_model(..., enable_FPS_control=False) in your gym environment.""")
|
||
|
|
||
|
now = time.time()
|
||
|
period = now - self.cf_last_time
|
||
|
self.cf_last_time = now
|
||
|
self.cf_delay += (self.cf_target_period - period)*0.9
|
||
|
if self.cf_delay > 0:
|
||
|
time.sleep(self.cf_delay)
|
||
|
else:
|
||
|
self.cf_delay = 0
|
||
|
|
||
|
|
||
|
def test_model(self, model:BaseAlgorithm, env, log_path:str=None, model_path:str=None, max_episodes=0, enable_FPS_control=True, verbose=1):
|
||
|
'''
|
||
|
Test model and log results
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : BaseAlgorithm
|
||
|
Trained model
|
||
|
env : Env
|
||
|
Gym-like environment
|
||
|
log_path : str
|
||
|
Folder where statistics file is saved, default is `None` (no file is saved)
|
||
|
model_path : str
|
||
|
Folder where it reads evaluations.npz to plot it and create evaluations.csv, default is `None` (no plot, no csv)
|
||
|
max_episodes : int
|
||
|
Run tests for this number of episodes
|
||
|
Default is 0 (run until user aborts)
|
||
|
verbose : int
|
||
|
0 - no output (except if enable_FPS_control=True)
|
||
|
1 - print episode statistics
|
||
|
'''
|
||
|
|
||
|
if model_path is not None:
|
||
|
assert os.path.isdir(model_path), f"{model_path} is not a valid path"
|
||
|
self.display_evaluations(model_path)
|
||
|
|
||
|
if log_path is not None:
|
||
|
assert os.path.isdir(log_path), f"{log_path} is not a valid path"
|
||
|
|
||
|
# If file already exists, don't overwrite
|
||
|
if os.path.isfile(log_path + "/test.csv"):
|
||
|
for i in range(1000):
|
||
|
p = f"{log_path}/test_{i:03}.csv"
|
||
|
if not os.path.isfile(p):
|
||
|
log_path = p
|
||
|
break
|
||
|
else:
|
||
|
log_path += "/test.csv"
|
||
|
|
||
|
with open(log_path, 'w') as f:
|
||
|
f.write("reward,ep. length,rew. cumulative avg., ep. len. cumulative avg.\n")
|
||
|
print("Train statistics are saved to:", log_path)
|
||
|
|
||
|
if enable_FPS_control: # control simulation speed (using non blocking user input)
|
||
|
print("\nThe simulation speed can be changed by sending a non-negative integer\n"
|
||
|
"(e.g. '50' sets speed to 50%, '0' pauses the simulation, '' sets speed to MAX)\n")
|
||
|
|
||
|
ep_reward = 0
|
||
|
ep_length = 0
|
||
|
rewards_sum = 0
|
||
|
reward_min = math.inf
|
||
|
reward_max = -math.inf
|
||
|
ep_lengths_sum = 0
|
||
|
ep_no = 0
|
||
|
|
||
|
obs = env.reset()
|
||
|
while True:
|
||
|
action, _states = model.predict(obs, deterministic=True)
|
||
|
obs, reward, done, info = env.step(action)
|
||
|
ep_reward += reward
|
||
|
ep_length += 1
|
||
|
|
||
|
if enable_FPS_control: # control simulation speed (using non blocking user input)
|
||
|
self.control_fps(select.select([sys.stdin], [], [], 0)[0])
|
||
|
|
||
|
if done:
|
||
|
obs = env.reset()
|
||
|
rewards_sum += ep_reward
|
||
|
ep_lengths_sum += ep_length
|
||
|
reward_max = max(ep_reward, reward_max)
|
||
|
reward_min = min(ep_reward, reward_min)
|
||
|
ep_no += 1
|
||
|
avg_ep_lengths = ep_lengths_sum/ep_no
|
||
|
avg_rewards = rewards_sum/ep_no
|
||
|
|
||
|
if verbose > 0:
|
||
|
print( f"\rEpisode: {ep_no:<3} Ep.Length: {ep_length:<4.0f} Reward: {ep_reward:<6.2f} \n",
|
||
|
end=f"--AVERAGE-- Ep.Length: {avg_ep_lengths:<4.0f} Reward: {avg_rewards:<6.2f} (Min: {reward_min:<6.2f} Max: {reward_max:<6.2f})", flush=True)
|
||
|
|
||
|
if log_path is not None:
|
||
|
with open(log_path, 'a') as f:
|
||
|
writer = csv.writer(f)
|
||
|
writer.writerow([ep_reward, ep_length, avg_rewards, avg_ep_lengths])
|
||
|
|
||
|
if ep_no == max_episodes:
|
||
|
return
|
||
|
|
||
|
ep_reward = 0
|
||
|
ep_length = 0
|
||
|
|
||
|
def learn_model(self, model:BaseAlgorithm, total_steps:int, path:str, eval_env=None, eval_freq=None, eval_eps=5, save_freq=None, backup_env_file=None, export_name=None):
|
||
|
'''
|
||
|
Learn Model for a specific number of time steps
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
model : BaseAlgorithm
|
||
|
Model to train
|
||
|
total_steps : int
|
||
|
The total number of samples (env steps) to train on
|
||
|
path : str
|
||
|
Path where the trained model is saved
|
||
|
If the path already exists, an incrementing number suffix is added
|
||
|
eval_env : Env
|
||
|
Environment to periodically test the model
|
||
|
Default is None (no periodical evaluation)
|
||
|
eval_freq : int
|
||
|
Evaluate the agent every X steps
|
||
|
Default is None (no periodical evaluation)
|
||
|
eval_eps : int
|
||
|
Evaluate the agent for X episodes (both eval_env and eval_freq must be defined)
|
||
|
Default is 5
|
||
|
save_freq : int
|
||
|
Saves model at every X steps
|
||
|
Default is None (no periodical checkpoint)
|
||
|
backup_gym_file : str
|
||
|
Generates backup of environment file in model's folder
|
||
|
Default is None (no backup)
|
||
|
export_name : str
|
||
|
If export_name and save_freq are defined, a model is exported every X steps
|
||
|
Default is None (no export)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
model_path : str
|
||
|
Directory where model was actually saved (considering incremental suffix)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If `eval_env` and `eval_freq` were specified:
|
||
|
- The policy will be evaluated in `eval_env` every `eval_freq` steps
|
||
|
- Evaluation results will be saved in `path` and shown at the end of training
|
||
|
- Every time the results improve, the model is saved
|
||
|
'''
|
||
|
|
||
|
start = time.time()
|
||
|
start_date = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
|
||
|
|
||
|
# If path already exists, add suffix to avoid overwriting
|
||
|
if os.path.isdir(path):
|
||
|
for i in count():
|
||
|
p = path.rstrip("/")+f'_{i:03}/'
|
||
|
if not os.path.isdir(p):
|
||
|
path = p
|
||
|
break
|
||
|
os.makedirs(path)
|
||
|
|
||
|
# Backup environment file
|
||
|
if backup_env_file is not None:
|
||
|
backup_file = os.path.join(path, os.path.basename(backup_env_file))
|
||
|
copy(backup_env_file, backup_file)
|
||
|
|
||
|
evaluate = bool(eval_env is not None and eval_freq is not None)
|
||
|
|
||
|
# Create evaluation callback
|
||
|
eval_callback = None if not evaluate else EvalCallback(eval_env, n_eval_episodes=eval_eps, eval_freq=eval_freq, log_path=path,
|
||
|
best_model_save_path=path, deterministic=True, render=False)
|
||
|
|
||
|
# Create custom callback to display evaluations
|
||
|
custom_callback = None if not evaluate else Cyclic_Callback(eval_freq, lambda:self.display_evaluations(path,True))
|
||
|
|
||
|
# Create checkpoint callback
|
||
|
checkpoint_callback = None if save_freq is None else CheckpointCallback(save_freq=save_freq, save_path=path, name_prefix="model", verbose=1)
|
||
|
|
||
|
# Create custom callback to export checkpoint models
|
||
|
export_callback = None if save_freq is None or export_name is None else Export_Callback(save_freq, path, export_name)
|
||
|
|
||
|
callbacks = CallbackList([c for c in [eval_callback, custom_callback, checkpoint_callback, export_callback] if c is not None])
|
||
|
|
||
|
model.learn( total_timesteps=total_steps, callback=callbacks )
|
||
|
model.save( os.path.join(path, "last_model") )
|
||
|
|
||
|
# Display evaluations if they exist
|
||
|
if evaluate:
|
||
|
self.display_evaluations(path)
|
||
|
|
||
|
# Display timestamps + Model path
|
||
|
end_date = datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
||
|
duration = timedelta(seconds=int(time.time()-start))
|
||
|
print(f"Train start: {start_date}")
|
||
|
print(f"Train end: {end_date}")
|
||
|
print(f"Train duration: {duration}")
|
||
|
print(f"Model path: {path}")
|
||
|
|
||
|
# Append timestamps to backup environment file
|
||
|
if backup_env_file is not None:
|
||
|
with open(backup_file, 'a') as f:
|
||
|
f.write(f"\n# Train start: {start_date}\n")
|
||
|
f.write( f"# Train end: {end_date}\n")
|
||
|
f.write( f"# Train duration: {duration}")
|
||
|
|
||
|
return path
|
||
|
|
||
|
def display_evaluations(self, path, save_csv=False):
|
||
|
|
||
|
eval_npz = os.path.join(path, "evaluations.npz")
|
||
|
|
||
|
if not os.path.isfile(eval_npz):
|
||
|
return
|
||
|
|
||
|
console_width = 80
|
||
|
console_height = 18
|
||
|
symb_x = "\u2022"
|
||
|
symb_o = "\u007c"
|
||
|
symb_xo = "\u237f"
|
||
|
|
||
|
with np.load(eval_npz) as data:
|
||
|
time_steps = data["timesteps"]
|
||
|
results_raw = np.mean(data["results"],axis=1)
|
||
|
ep_lengths_raw = np.mean(data["ep_lengths"],axis=1)
|
||
|
sample_no = len(results_raw)
|
||
|
|
||
|
xvals = np.linspace(0, sample_no-1, 80)
|
||
|
results = np.interp(xvals, range(sample_no), results_raw)
|
||
|
ep_lengths = np.interp(xvals, range(sample_no), ep_lengths_raw)
|
||
|
|
||
|
results_limits = np.min(results), np.max(results)
|
||
|
ep_lengths_limits = np.min(ep_lengths), np.max(ep_lengths)
|
||
|
|
||
|
results_discrete = np.digitize(results, np.linspace(results_limits[0]-1e-5, results_limits[1]+1e-5, console_height+1))-1
|
||
|
ep_lengths_discrete = np.digitize(ep_lengths, np.linspace(0, ep_lengths_limits[1]+1e-5, console_height+1))-1
|
||
|
|
||
|
matrix = np.zeros((console_height, console_width, 2), int)
|
||
|
matrix[results_discrete[0] ][0][0] = 1 # draw 1st column
|
||
|
matrix[ep_lengths_discrete[0]][0][1] = 1 # draw 1st column
|
||
|
rng = [[results_discrete[0], results_discrete[0]], [ep_lengths_discrete[0], ep_lengths_discrete[0]]]
|
||
|
|
||
|
# Create continuous line for both plots
|
||
|
for k in range(2):
|
||
|
for i in range(1,console_width):
|
||
|
x = [results_discrete, ep_lengths_discrete][k][i]
|
||
|
if x > rng[k][1]:
|
||
|
rng[k] = [rng[k][1]+1, x]
|
||
|
elif x < rng[k][0]:
|
||
|
rng[k] = [x, rng[k][0]-1]
|
||
|
else:
|
||
|
rng[k] = [x,x]
|
||
|
for j in range(rng[k][0],rng[k][1]+1):
|
||
|
matrix[j][i][k] = 1
|
||
|
|
||
|
print(f'{"-"*console_width}')
|
||
|
for l in reversed(range(console_height)):
|
||
|
for c in range(console_width):
|
||
|
if np.all(matrix[l][c] == 0): print(end=" ")
|
||
|
elif np.all(matrix[l][c] == 1): print(end=symb_xo)
|
||
|
elif matrix[l][c][0] == 1: print(end=symb_x)
|
||
|
else: print(end=symb_o)
|
||
|
print()
|
||
|
print(f'{"-"*console_width}')
|
||
|
print(f"({symb_x})-reward min:{results_limits[0]:11.2f} max:{results_limits[1]:11.2f}")
|
||
|
print(f"({symb_o})-ep. length min:{ep_lengths_limits[0]:11.0f} max:{ep_lengths_limits[1]:11.0f} {time_steps[-1]/1000:15.0f}k steps")
|
||
|
print(f'{"-"*console_width}')
|
||
|
|
||
|
# save CSV
|
||
|
if save_csv:
|
||
|
eval_csv = os.path.join(path, "evaluations.csv")
|
||
|
with open(eval_csv, 'a+') as f:
|
||
|
writer = csv.writer(f)
|
||
|
if sample_no == 1:
|
||
|
writer.writerow(["time_steps", "reward ep.", "length"])
|
||
|
writer.writerow([time_steps[-1],results_raw[-1],ep_lengths_raw[-1]])
|
||
|
|
||
|
|
||
|
def generate_slot_behavior(self, path, slots, auto_head:bool, XML_name):
|
||
|
'''
|
||
|
Function that generates the XML file for the optimized slot behavior, overwriting previous files
|
||
|
'''
|
||
|
|
||
|
file = os.path.join( path, XML_name )
|
||
|
|
||
|
# create the file structure
|
||
|
auto_head = '1' if auto_head else '0'
|
||
|
EL_behavior = ET.Element('behavior',{'description':'Add description to XML file', "auto_head":auto_head})
|
||
|
|
||
|
for i,s in enumerate(slots):
|
||
|
EL_slot = ET.SubElement(EL_behavior, 'slot', {'name':str(i), 'delta':str(s[0]/1000)})
|
||
|
for j in s[1]: # go through all joint indices
|
||
|
ET.SubElement(EL_slot, 'move', {'id':str(j), 'angle':str(s[2][j])})
|
||
|
|
||
|
# create XML file
|
||
|
xml_rough = ET.tostring( EL_behavior, 'utf-8' )
|
||
|
xml_pretty = minidom.parseString(xml_rough).toprettyxml(indent=" ")
|
||
|
with open(file, "w") as x:
|
||
|
x.write(xml_pretty)
|
||
|
|
||
|
print(file, "was created!")
|
||
|
|
||
|
@staticmethod
|
||
|
def linear_schedule(initial_value: float) -> Callable[[float], float]:
|
||
|
'''
|
||
|
Linear learning rate schedule
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
initial_value : float
|
||
|
Initial learning rate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
schedule : Callable[[float], float]
|
||
|
schedule that computes current learning rate depending on remaining progress
|
||
|
'''
|
||
|
def func(progress_remaining: float) -> float:
|
||
|
'''
|
||
|
Compute learning rate according to current progress
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
progress_remaining : float
|
||
|
Progress will decrease from 1 (beginning) to 0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
learning_rate : float
|
||
|
Learning rate according to current progress
|
||
|
'''
|
||
|
return progress_remaining * initial_value
|
||
|
|
||
|
return func
|
||
|
|
||
|
@staticmethod
|
||
|
def export_model(input_file, output_file, add_sufix=True):
|
||
|
'''
|
||
|
Export model weights to binary file
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input_file : str
|
||
|
Input file, compatible with algorithm
|
||
|
output_file : str
|
||
|
Output file, including directory
|
||
|
add_sufix : bool
|
||
|
If true, a suffix is appended to the file name: output_file + "_{index}.pkl"
|
||
|
'''
|
||
|
|
||
|
# If file already exists, don't overwrite
|
||
|
if add_sufix:
|
||
|
for i in count():
|
||
|
f = f"{output_file}_{i:03}.pkl"
|
||
|
if not os.path.isfile(f):
|
||
|
output_file = f
|
||
|
break
|
||
|
|
||
|
model = PPO.load(input_file)
|
||
|
weights = model.policy.state_dict() # dictionary containing network layers
|
||
|
|
||
|
w = lambda name : weights[name].detach().cpu().numpy() # extract weights from policy
|
||
|
|
||
|
var_list = []
|
||
|
for i in count(0,2): # add hidden layers (step=2 because that's how SB3 works)
|
||
|
if f"mlp_extractor.policy_net.{i}.bias" not in weights:
|
||
|
break
|
||
|
var_list.append([w(f"mlp_extractor.policy_net.{i}.bias"), w(f"mlp_extractor.policy_net.{i}.weight"), "tanh"])
|
||
|
|
||
|
var_list.append( [w("action_net.bias"), w("action_net.weight"), "none"] ) # add final layer
|
||
|
|
||
|
with open(output_file,"wb") as f:
|
||
|
pickle.dump(var_list, f, protocol=4) # protocol 4 is backward compatible with Python 3.4
|
||
|
|
||
|
|
||
|
|
||
|
class Cyclic_Callback(BaseCallback):
|
||
|
''' Stable baselines custom callback '''
|
||
|
def __init__(self, freq, function):
|
||
|
super(Cyclic_Callback, self).__init__(1)
|
||
|
self.freq = freq
|
||
|
self.function = function
|
||
|
|
||
|
def _on_step(self) -> bool:
|
||
|
if self.n_calls % self.freq == 0:
|
||
|
self.function()
|
||
|
return True # If the callback returns False, training is aborted early
|
||
|
|
||
|
class Export_Callback(BaseCallback):
|
||
|
''' Stable baselines custom callback '''
|
||
|
def __init__(self, freq, load_path, export_name):
|
||
|
super(Export_Callback, self).__init__(1)
|
||
|
self.freq = freq
|
||
|
self.load_path = load_path
|
||
|
self.export_name = export_name
|
||
|
|
||
|
def _on_step(self) -> bool:
|
||
|
if self.n_calls % self.freq == 0:
|
||
|
path = os.path.join(self.load_path, f"model_{self.num_timesteps}_steps.zip")
|
||
|
Train_Base.export_model(path, f"./scripts/gyms/export/{self.export_name}")
|
||
|
return True # If the callback returns False, training is aborted early
|