You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
918 lines
35 KiB
C++
918 lines
35 KiB
C++
9 months ago
|
#include "a_star.h"
|
||
|
#include "expansion_groups.h"
|
||
|
#include <cmath>
|
||
|
#include <algorithm>
|
||
|
#include <chrono>
|
||
|
#define SQRT2 1.414213562373095f
|
||
|
#define LINES 321
|
||
|
#define COLS 221
|
||
|
#define MAX_RADIUS 5 // obstacle max radius in meters
|
||
|
#define IN_GOAL_LINE 312 // target line when go_to_goal is 'true' (312 -> 15.2m)
|
||
|
using std::chrono::high_resolution_clock;
|
||
|
using std::chrono::duration_cast;
|
||
|
using std::chrono::microseconds;
|
||
|
|
||
|
/*
|
||
|
Map dimensions: 32m*22m
|
||
|
col 0 ... col 220
|
||
|
line 0
|
||
|
--- our goal --- line 1
|
||
|
| | line 2
|
||
|
| | line 3
|
||
|
|--------------| ...
|
||
|
| | line 317
|
||
|
| | line 318
|
||
|
-- their goal -- line 319
|
||
|
line 320
|
||
|
|
||
|
[(H)ard wall: -3, (S)oft wall: -2, (E)mpty: 0, 0 < Cost < inf]
|
||
|
*/
|
||
|
|
||
|
// build board cost statically
|
||
|
#define H27 -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3
|
||
|
#define S11 -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
|
||
|
#define S19 S11,-2,-2,-2,-2,-2,-2,-2,-2
|
||
|
#define S97 S11,S11,S11,S11,S11,S11,S11,S11,-2,-2,-2,-2,-2,-2,-2,-2,-2
|
||
|
#define S98 S11,S11,S11,S11,S11,S11,S11,S11,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
|
||
|
#define S221 S98,S98,S11,S11,-2,-2,-2
|
||
|
#define E19 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
|
||
|
#define E197 E19,E19,E19,E19,E19,E19,E19,E19,E19,E19,0,0,0,0,0,0,0
|
||
|
#define L0 S221 // Line 0: soft W
|
||
|
#define L0_1 L0,L0
|
||
|
#define L2 S97,H27,S97 // Line 2: soft W, (goal post, back net, goal post), soft W
|
||
|
#define L2_5 L2,L2,L2,L2
|
||
|
#define L6 S98,-3,-3,-3,S19,-3,-3,-3,S98 // Line 6: soft W, goal post, soft W, goal post, soft W
|
||
|
#define L6_10 L6,L6,L6,L6,L6
|
||
|
#define L11 S98,-2,-3,-3,S19,-3,-3,-2,S98 // Line 11:soft W, empty field, goal post, soft W, goal post,empty field, soft W
|
||
|
#define L12 S11,-2,E197,-2,S11 // Line 12:soft W, empty field, soft W
|
||
|
|
||
|
#define L12x33 L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12,L12
|
||
|
#define LIN12_308 L12x33,L12x33,L12x33,L12x33,L12x33,L12x33,L12x33,L12x33,L12x33
|
||
|
|
||
|
#define L309 S98,-2,-3,-3,E19,-3,-3,-2,S98 // Line 309: soft W, empty field, goal post, empty field, goal post,empty field, soft W
|
||
|
#define L310 S98,-3,-3,-3,E19,-3,-3,-3,S98 // Line 310: soft W, goal post, inside goal, goal post, soft W
|
||
|
#define L310_314 L310,L310,L310,L310,L310
|
||
|
|
||
|
using std::min;
|
||
|
using std::max;
|
||
|
|
||
|
|
||
|
#define MIN min_node
|
||
|
Node* min_node; // non-expanded node with lowest predicted total cost (f)
|
||
|
|
||
|
namespace open{
|
||
|
|
||
|
Node* insert(Node* new_node, Node* root) {
|
||
|
|
||
|
new_node->left = nullptr;
|
||
|
new_node->right = nullptr;
|
||
|
|
||
|
// Empty BST, return without saving min_node
|
||
|
if(root == nullptr){
|
||
|
new_node->up = nullptr;
|
||
|
MIN = new_node; // save min node for fast access
|
||
|
return new_node;
|
||
|
}
|
||
|
|
||
|
// If new_node is the new min node
|
||
|
if(new_node->f < MIN->f){
|
||
|
MIN->left = new_node;
|
||
|
new_node->up = MIN;
|
||
|
MIN = new_node;
|
||
|
return root;
|
||
|
}
|
||
|
|
||
|
Node* node = root;
|
||
|
float key = new_node->f;
|
||
|
|
||
|
while(true){
|
||
|
if (key < node->f)
|
||
|
if(node->left == nullptr){
|
||
|
node->left = new_node;
|
||
|
break;
|
||
|
}else{
|
||
|
node = node->left;
|
||
|
}
|
||
|
else{
|
||
|
if(node->right == nullptr){
|
||
|
node->right = new_node;
|
||
|
break;
|
||
|
}else{
|
||
|
node = node->right;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
new_node->up = node;
|
||
|
return root;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Remove min node
|
||
|
Node* pop(Node* root) {
|
||
|
|
||
|
// Minimum node can have right child, but not left child
|
||
|
if (MIN->right == nullptr){
|
||
|
if(MIN == root){ //------(A)------ min node is root and has no children
|
||
|
return nullptr; // BST is empty
|
||
|
}
|
||
|
MIN->up->left = nullptr; //------(B)------ min node has no children but has parent
|
||
|
MIN = MIN->up;
|
||
|
}else{
|
||
|
if(MIN == root){ //------(C)------ min node is root and has right child
|
||
|
MIN = MIN->right;
|
||
|
root = MIN;
|
||
|
root->up = nullptr;
|
||
|
|
||
|
while(MIN->left != nullptr){ // update new min node
|
||
|
MIN = MIN->left;
|
||
|
}
|
||
|
|
||
|
return root; // right child is now root
|
||
|
}
|
||
|
MIN->right->up = MIN->up; //------(D)------ min node has right child and parent
|
||
|
MIN->up->left = MIN->right;
|
||
|
|
||
|
MIN = MIN->right;
|
||
|
while(MIN->left != nullptr){ // update new min node
|
||
|
MIN = MIN->left;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return root;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Remove specific node
|
||
|
Node* delete_node(Node* node, Node* root) {
|
||
|
|
||
|
if(node == MIN){ // remove min node
|
||
|
return pop(root);
|
||
|
}
|
||
|
|
||
|
if(node->left==nullptr and node->right==nullptr){ //------(A)------ node has no children (it can't be root, otherwise it would be min node)
|
||
|
// Redirect incoming connection
|
||
|
if(node->up->left == node){ node->up->left = nullptr; }
|
||
|
else{ node->up->right = nullptr; }
|
||
|
|
||
|
}else if(node->left==nullptr){ //------(B)------ node has right child (it can't be root, otherwise it would be min node)
|
||
|
// Redirect incoming connections
|
||
|
node->right->up = node->up;
|
||
|
if(node->up->left == node){ node->up->left = node->right; }
|
||
|
else{ node->up->right = node->right; }
|
||
|
|
||
|
}else if(node->right==nullptr){ //------(C)------ node has left child
|
||
|
if(node == root){
|
||
|
node->left->up = nullptr;
|
||
|
return node->left; // left child becomes root
|
||
|
}
|
||
|
|
||
|
// Redirect incoming connections (if not root)
|
||
|
node->left->up = node->up;
|
||
|
if(node->up->left == node){ node->up->left = node->left; }
|
||
|
else{ node->up->right = node->left; }
|
||
|
|
||
|
}else{ //------(D)------ node has 2 children
|
||
|
Node *successor = node->right;
|
||
|
if(successor->left == nullptr){ //----- if successor is the node's right child (successor has no left child)
|
||
|
|
||
|
//-------------- successor replaces node
|
||
|
|
||
|
// Outgoing connections (successor's right child is not changed)
|
||
|
successor->left = node->left;
|
||
|
successor->up = node->up; // if node is root this is also ok
|
||
|
|
||
|
// Incoming connections
|
||
|
node->left->up = successor;
|
||
|
|
||
|
if(node == root){ return successor; } // successor becomes root
|
||
|
|
||
|
// Incoming connections (if not root)
|
||
|
if(node->up->left == node){ node->up->left = successor; }
|
||
|
else{ node->up->right = successor; }
|
||
|
|
||
|
}else{ //------ if successor is deeper (successor has no left child, and is itself a left child)
|
||
|
do{
|
||
|
successor = successor->left;
|
||
|
}while(successor->left != nullptr);
|
||
|
|
||
|
//-------------- Remove successor by redirecting its incoming connections
|
||
|
if(successor->right==nullptr){ // no children
|
||
|
successor->up->left = nullptr;
|
||
|
}else{
|
||
|
successor->up->left = successor->right;
|
||
|
successor->right->up = successor->up;
|
||
|
}
|
||
|
|
||
|
//-------------- successor replaces node
|
||
|
|
||
|
// Outgoing connections
|
||
|
successor->left = node->left;
|
||
|
successor->right = node->right;
|
||
|
successor->up = node->up; // if node is root this is also ok
|
||
|
|
||
|
// Incoming connections
|
||
|
node->left->up = successor;
|
||
|
node->right->up = successor;
|
||
|
|
||
|
if(node == root){ return successor; } // successor becomes root
|
||
|
|
||
|
// Incoming connections (if not root)
|
||
|
if(node->up->left == node){ node->up->left = successor; }
|
||
|
else{ node->up->right = successor; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return root;
|
||
|
}
|
||
|
|
||
|
// Inorder Traversal
|
||
|
// void inorder(Node* root, Node* board) {
|
||
|
// if (root != nullptr) {
|
||
|
// // Traverse left
|
||
|
// inorder(root->left, board);
|
||
|
|
||
|
// // Traverse root
|
||
|
// std::cout << (root-board)/COLS << " " << (root-board)%COLS << " -> ";
|
||
|
|
||
|
// // Traverse right
|
||
|
// inorder(root->right, board);
|
||
|
|
||
|
// }
|
||
|
// return;
|
||
|
// }
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
inline int x_to_line(float x){
|
||
|
return int(fmaxf(0.f, fminf(10*x+160, 320.f)) + 0.5f);
|
||
|
}
|
||
|
|
||
|
inline int y_to_col(float y){
|
||
|
return int(fmaxf(0.f, fminf(10*y+110, 220.f)) + 0.5f);
|
||
|
}
|
||
|
|
||
|
inline float diagonal_distance(bool go_to_goal, int line, int col, int end_l, int end_c){
|
||
|
// diagonal distance - adapted from http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
|
||
|
int dl, dc;
|
||
|
if( go_to_goal ){
|
||
|
dl = abs(IN_GOAL_LINE - line);
|
||
|
if (col>119) { dc = col-119; }
|
||
|
else if (col<101) { dc = 101-col; }
|
||
|
else { dc = 0; }
|
||
|
}else{
|
||
|
dl = abs(line - end_l);
|
||
|
dc = abs(col - end_c);
|
||
|
}
|
||
|
return (dl + dc) - 0.585786437626905f * min(dl,dc);
|
||
|
}
|
||
|
|
||
|
inline Node* expand_child(Node* open_root, float cost, float wall_index, Node* curr_node, Node* board, int pos, int state,
|
||
|
bool go_to_goal, int line, int col, int end_l, int end_c, unsigned int* node_state, float extra ){
|
||
|
// child can be as inaccessible as current pos (but there is a cost penalty to avoid inaccessible paths)
|
||
|
if(cost <= wall_index){
|
||
|
cost = 100.f;
|
||
|
}
|
||
|
|
||
|
// g (min cost from start to n)
|
||
|
float g = curr_node->g + extra + std::fmaxf(0.f,cost); // current cost + child distance
|
||
|
|
||
|
Node* child = &board[pos];
|
||
|
|
||
|
// if child is already in the open set
|
||
|
if (state){
|
||
|
if (g >= child->g){
|
||
|
return open_root; // if not an improvement, we discard the new child
|
||
|
}else{
|
||
|
open_root = open::delete_node(child, open_root); // if it is an improvement: remove reference, update it, add it again in correct order
|
||
|
}
|
||
|
}else{
|
||
|
node_state[pos] = 1;
|
||
|
}
|
||
|
|
||
|
// f (prediction of min total cost passing through n)
|
||
|
float f = g + diagonal_distance(go_to_goal,line,col,end_l,end_c);
|
||
|
|
||
|
child->g = g;
|
||
|
child->f = f;
|
||
|
child->parent = curr_node;
|
||
|
return open::insert(child, open_root);
|
||
|
}
|
||
|
|
||
|
|
||
|
float final_path[2050];
|
||
|
int final_path_size;
|
||
|
|
||
|
inline void build_final_path(Node* const best_node, const Node* board, float status, const bool override_end=false, const float end_x=0, const float end_y=0){
|
||
|
// Node* pt = best_node;
|
||
|
// while( pt != nullptr ){
|
||
|
// int pos = pt - board;
|
||
|
// board_cost[pos] = -4;
|
||
|
// pt = pt->parent;
|
||
|
// }
|
||
|
// std::cout << "\n";
|
||
|
// for(int l=l_min; l<=l_max; l++){
|
||
|
// for(int c=c_min; c<=c_max; c++){
|
||
|
// //[(H)ard wall: -3, (S)oft wall: -2, (E)mpty: 0, 0 < Cost < inf]
|
||
|
// //if (board[l][c].closed) std::cout << "o";
|
||
|
// if (board_cost[l*COLS+c] == -3) std::cout << "h";
|
||
|
// else if (board_cost[l*COLS+c] == -2) std::cout << "s";
|
||
|
// else if (board_cost[l*COLS+c] == -4) std::cout << ".";
|
||
|
// else if (board_cost[l*COLS+c] == -1) std::cout << "g";
|
||
|
// else if (board_cost[l*COLS+c] == 0 and node_state[l*COLS+c]==2) std::cout << "o";
|
||
|
// else if (board_cost[l*COLS+c] == 0) std::cout << " ";
|
||
|
// //ele ainda nao sabe ler hard walls
|
||
|
// else std::cout << int(board_cost[l*COLS+c]+0.5f);
|
||
|
// }
|
||
|
// std::cout << "\n";
|
||
|
// }
|
||
|
|
||
|
// Using 'current_node' would suffice if A* reaches the objective (but 'best_node' works with impossible paths or timeout)
|
||
|
Node* ptr = best_node;
|
||
|
int counter=0;
|
||
|
do{
|
||
|
ptr = ptr->parent;
|
||
|
counter++;
|
||
|
}while( ptr != nullptr );
|
||
|
|
||
|
final_path_size = min(counter*2,2048);
|
||
|
|
||
|
ptr = best_node;
|
||
|
int i = final_path_size-1;
|
||
|
|
||
|
// if enabled, replace end point with correct coordinates instead of discrete version
|
||
|
if(override_end){
|
||
|
final_path[i--] = end_y;
|
||
|
final_path[i--] = end_x;
|
||
|
ptr = ptr->parent;
|
||
|
}
|
||
|
|
||
|
for(; i>0;){
|
||
|
final_path[i--] = ((ptr-board) % COLS)/10.f-11.f; // y
|
||
|
final_path[i--] = ((ptr-board) / COLS)/10.f-16.f; // x
|
||
|
ptr = ptr->parent;
|
||
|
}
|
||
|
|
||
|
// add status (& increment path size)
|
||
|
final_path[final_path_size++] = status; // 0-success, 1-timeout, 2-impossible, 3-no obstacles(this one is not done in this function)
|
||
|
|
||
|
// add cost (& increment path size)
|
||
|
final_path[final_path_size++] = best_node->g / 10.f; // min. A* cost from start to best_node
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Returns true if line segment 'ab' intersects either goal (considering the unreachable area)
|
||
|
* - This function assumes that 'a' and 'b' are two points outside the unreachable goal area
|
||
|
* - Therefore, 'ab' must enter and exit the goal unreachable area
|
||
|
* - To detect this, we consider only the intersection of 'ab' and the goal outer borders (back+sides)
|
||
|
* - The front should already be covered by independent goal posts checks
|
||
|
*/
|
||
|
inline bool does_intersect_any_goal(float a_x, float a_y, float b_x, float b_y){
|
||
|
|
||
|
float ab_x = b_x - a_x;
|
||
|
float ab_y = b_y - a_y;
|
||
|
float k;
|
||
|
|
||
|
if(ab_x != 0){ // Check if 'ab' and goal back is noncollinear (collinear intersections are ignored)
|
||
|
|
||
|
k = (15.75-a_x) / ab_x; // a_x + ab_x*k = 15.75
|
||
|
if (k >= 0 and k <= 1 and fabsf(a_y + ab_y * k) <= 1.25){ // collision (intersection_y = a_y + ab_y*k)
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
k = (-15.75-a_x) / ab_x; // a_x + ab_x*k = -15.75
|
||
|
if (k >= 0 and k <= 1 and fabsf(a_y + ab_y * k) <= 1.25){ // collision (intersection_y = a_y + ab_y*k)
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(ab_y != 0){ // Check if 'ab' and goal sides are noncollinear (collinear intersections are ignored)
|
||
|
|
||
|
k = (1.25-a_y) / ab_y; // a_y + ab_y*k = 1.25
|
||
|
if( k >= 0 and k <= 1){
|
||
|
float intersection_x_abs = fabsf(a_x + ab_x * k);
|
||
|
if( intersection_x_abs >= 15 and intersection_x_abs <= 15.75 ){ // check one side for both goals at same time
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
k = (-1.25-a_y) / ab_y; // a_y + ab_y*k = -1.25
|
||
|
if( k >= 0 and k <= 1){
|
||
|
float intersection_x_abs = fabsf(a_x + ab_x * k);
|
||
|
if( intersection_x_abs >= 15 and intersection_x_abs <= 15.75 ){ // check one side for both goals at same time
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Add space cushion near the midlines and endlines
|
||
|
*/
|
||
|
inline void add_space_cushion(float board_cost[]){
|
||
|
|
||
|
#define CUSHION_WIDTH 6
|
||
|
|
||
|
// opponent goal line
|
||
|
for(int i=0; i<CUSHION_WIDTH; i++){
|
||
|
int ii = (i+12)*COLS;
|
||
|
for(int j=12+i; j<209-i; j++){
|
||
|
board_cost[ii+j] = CUSHION_WIDTH-i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// our goal line
|
||
|
for(int i=0; i<CUSHION_WIDTH; i++){
|
||
|
int ii = (308-i)*COLS;
|
||
|
for(int j=12+i; j<99; j++){
|
||
|
board_cost[ii+j] = CUSHION_WIDTH-i;
|
||
|
board_cost[ii+220-j] = CUSHION_WIDTH-i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// sidelines
|
||
|
for(int i=0; i<CUSHION_WIDTH; i++){
|
||
|
for(int j=(13+i)*COLS; j<(308-i)*COLS; j+=COLS){
|
||
|
board_cost[j+i+12] = CUSHION_WIDTH-i;
|
||
|
board_cost[j-i+208] = CUSHION_WIDTH-i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief This function checks if a straight path from start to end is obstructed by obstacles
|
||
|
* Returning 'false' means that we do not need A* to solve this problem
|
||
|
*
|
||
|
* Normal case (start != end):
|
||
|
* The path is obstructed if it intersects any hard or soft circumference
|
||
|
* Special case (start == end):
|
||
|
* The path is obstructed if start is inside any hard circumference
|
||
|
*/
|
||
|
bool is_path_obstructed(float start_x, float start_y, float end_x, float end_y, float given_obstacles[],
|
||
|
int given_obst_size, bool go_to_goal, int wall_index, float board_cost[]){
|
||
|
|
||
|
|
||
|
// Restrict start coordinates to map
|
||
|
start_x = max(-16.f, min(start_x, 16.f));
|
||
|
start_y = max(-11.f, min(start_y, 11.f));
|
||
|
|
||
|
int s_lin = x_to_line(start_x);
|
||
|
int e_lin = x_to_line(end_x);
|
||
|
int s_col = y_to_col(start_y);
|
||
|
int e_col = y_to_col(end_y);
|
||
|
float s_cost = board_cost[s_lin*COLS+s_col];
|
||
|
float e_cost = board_cost[e_lin*COLS+e_col];
|
||
|
|
||
|
// Path is obvious if start/end are is same or adjacent cells
|
||
|
bool is_near = abs(s_lin - e_lin) <= 1 and abs(s_col - e_col) <= 1;
|
||
|
|
||
|
// Let A* handle it if the start position is unreachable or (out of bounds is not allowed && is nearly out of bounds && not near end)
|
||
|
if(s_cost <= wall_index or (!is_near and s_cost > 0)){
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
if (go_to_goal){ // This is a safe target. If it generates a collision with any goal post, we use A* instead.
|
||
|
end_x = 15.2;
|
||
|
end_y = max(-0.8f, min(start_y, 0.8f));
|
||
|
}else{ // Restrict end coordinates to map
|
||
|
end_x = max(-16.f, min(end_x, 16.f));
|
||
|
end_y = max(-11.f, min(end_y, 11.f));
|
||
|
|
||
|
// Let A* handle it if the end position is unreachable or (is nearly out of bounds && out of bounds is not allowed && not near end)
|
||
|
if(e_cost <= wall_index or (!is_near and e_cost > 0)){
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Check if path intersects either goal (considering the unreachable area)
|
||
|
* - at this point we know that 'start' and 'end' are reachable
|
||
|
* - Therefore, the path must enter and exit the goal unreachable area for an intersection to exist
|
||
|
* - To detect this, we consider only the intersection of the path and the goal outer borders (back+sides)
|
||
|
* - The front is covered next by goal posts checks
|
||
|
*/
|
||
|
if (does_intersect_any_goal(start_x, start_y, end_x, end_y)) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ----------------------- List all obstacles: given obstacles + goal posts
|
||
|
* note that including the goal posts in the given obstacles is not a bad idea since the default
|
||
|
* goal posts we add here provide no space cushion (which may be needed if the robot is not precise)
|
||
|
* values explanation:
|
||
|
* - goal post location (tested in simulator, collision with robot, robot is sideways to the goal post and arms are close to body)
|
||
|
* - hard radius (tested in the same way, robot collides when closer than 0.15m from goal post border)
|
||
|
* post radius 0.02 + agent radius 0.15 = 0.17
|
||
|
* - largest radius (equivalent to hard radius, since there is no soft radius)
|
||
|
*/
|
||
|
|
||
|
float obst[given_obst_size*4/5+16] = {
|
||
|
15.02, 1.07, 0.17, 0.17,
|
||
|
15.02, -1.07, 0.17, 0.17,
|
||
|
-15.02, 1.07, 0.17, 0.17,
|
||
|
-15.02, -1.07, 0.17, 0.17
|
||
|
}; // x, y, hard radius, largest radius
|
||
|
|
||
|
|
||
|
int obst_size = 16;
|
||
|
|
||
|
for(int i=0; i<given_obst_size; i+=5){
|
||
|
obst[obst_size++] = given_obstacles[i]; // x
|
||
|
obst[obst_size++] = given_obstacles[i+1]; // y
|
||
|
obst[obst_size++] = fmaxf( 0, fminf(given_obstacles[i+2], MAX_RADIUS) ); // hard radius
|
||
|
obst[obst_size++] = fmaxf( 0, fminf(max(given_obstacles[i+2], given_obstacles[i+3]), MAX_RADIUS) ); // largest radius
|
||
|
}
|
||
|
|
||
|
//------------------------ Special case (start ~= end): the path is obstructed if start or end are inside any hard circumference
|
||
|
|
||
|
if( is_near ){
|
||
|
for(int ob=0; ob<obst_size; ob+=4){
|
||
|
float c_x = obst[ob]; // obstacle center
|
||
|
float c_y = obst[ob+1]; // obstacle center
|
||
|
float hard_radius = obst[ob+2]; // hard radius
|
||
|
float r_sq = hard_radius * hard_radius; // squared radius
|
||
|
|
||
|
float sc_x = c_x - start_x;
|
||
|
float sc_y = c_y - start_y;
|
||
|
float ec_x = c_x - end_x;
|
||
|
float ec_y = c_y - end_y;
|
||
|
|
||
|
if(sc_x*sc_x + sc_y*sc_y <= r_sq or ec_x*ec_x + ec_y*ec_y <= r_sq){ // check distance: center<->start center<->end
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}else{
|
||
|
|
||
|
//-------------------- Normal case (start !~= end): the path is obstructed if it intersects any hard or soft circumference
|
||
|
|
||
|
// for each obstacle: check if circle intersects line segment (start-end)
|
||
|
for(int ob=0; ob<obst_size; ob+=4){
|
||
|
float c_x = obst[ob]; // obstacle center
|
||
|
float c_y = obst[ob+1]; // obstacle center
|
||
|
float largest_radius = obst[ob+3]; // largest radius
|
||
|
float r_sq = largest_radius * largest_radius; // squared radius
|
||
|
|
||
|
float sc_x = c_x - start_x;
|
||
|
float sc_y = c_y - start_y;
|
||
|
float se_x = end_x - start_x;
|
||
|
float se_y = end_y - start_y;
|
||
|
|
||
|
float sc_proj_scale = (sc_x*se_x + sc_y*se_y) / (se_x*se_x + se_y*se_y); // scale = projection length / target vector length
|
||
|
float sc_proj_x = se_x * sc_proj_scale; // projection of start->center onto start->end
|
||
|
float sc_proj_y = se_y * sc_proj_scale; // projection of start->center onto start->end
|
||
|
|
||
|
// check if projection falls on top of trajectory (start->projection = k * start->end)
|
||
|
float k = abs(se_x)>abs(se_y) ? sc_proj_x/se_x : sc_proj_y/se_y; // we use the largest dimension of start->end to avoid division by 0
|
||
|
|
||
|
if(k <= 0){
|
||
|
if(sc_x*sc_x + sc_y*sc_y <= r_sq){ // check distance: center<->start
|
||
|
return true;
|
||
|
}
|
||
|
}else if(k >= 1){
|
||
|
float ec_x = c_x - end_x;
|
||
|
float ec_y = c_y - end_y;
|
||
|
if(ec_x*ec_x + ec_y*ec_y <= r_sq){ // check distance: center<->end
|
||
|
return true;
|
||
|
}
|
||
|
}else{
|
||
|
float proj_c_x = c_x - (sc_proj_x + start_x);
|
||
|
float proj_c_y = c_y - (sc_proj_y + start_y);
|
||
|
if(proj_c_x*proj_c_x + proj_c_y*proj_c_y <= r_sq){ // check distance: center<->projection
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float path_x = end_x - start_x;
|
||
|
float path_y = end_y - start_y;
|
||
|
|
||
|
final_path_size = 6;
|
||
|
final_path[0] = start_x;
|
||
|
final_path[1] = start_y;
|
||
|
final_path[2] = end_x;
|
||
|
final_path[3] = end_y;
|
||
|
final_path[4] = 3; // status: 3-no obstacles
|
||
|
final_path[5] = sqrtf(path_x*path_x+path_y*path_y) + max(0.f, e_cost/10.f); // min. A* cost from start to end (e_cost is added even if start==end to help debug cell costs)
|
||
|
|
||
|
return false; // no obstruction was found
|
||
|
}
|
||
|
|
||
|
// opponent players + active player + restricted areas (from referee)
|
||
|
// data:
|
||
|
// [start x][start y]
|
||
|
// [allow out of bounds?][go to goal?]
|
||
|
// [optional target x][optional target y]
|
||
|
// [timeout]
|
||
|
// [x][y][hard radius][soft radius][force]
|
||
|
void astar(float params[], int params_size){
|
||
|
|
||
|
auto t1 = high_resolution_clock::now();
|
||
|
|
||
|
const float s_x = params[0]; // start x
|
||
|
const float s_y = params[1]; // start y
|
||
|
const bool allow_out_of_bounds = params[2];
|
||
|
const int wall_index = allow_out_of_bounds ? -3 : -2; // (cost <= wall_index) means 'unreachable'
|
||
|
const bool go_to_goal = params[3];
|
||
|
const float opt_t_x = params[4]; // optional target x
|
||
|
const float opt_t_y = params[5]; // optional target y
|
||
|
const int timeout_us = params[6];
|
||
|
float* obstacles = ¶ms[7];
|
||
|
int obst_size = params_size-7; // size of obstacles array
|
||
|
|
||
|
//======================================================== Populate board 0: add field layout
|
||
|
float board_cost[LINES*COLS] = {L0_1,L2_5,L6_10,L11,LIN12_308,L309,L310_314,L2_5,L0_1};
|
||
|
|
||
|
if (!allow_out_of_bounds){ // add cost to getting near sideline or endline (except near goal)
|
||
|
add_space_cushion(board_cost);
|
||
|
}
|
||
|
|
||
|
//======================================================== Check if path is obstructed
|
||
|
|
||
|
if (!is_path_obstructed(s_x, s_y, opt_t_x, opt_t_y, obstacles, obst_size, go_to_goal, wall_index, board_cost)){
|
||
|
return; // return if path is not obstructed
|
||
|
}
|
||
|
|
||
|
//======================================================== Define board basics (start, end, limits)
|
||
|
|
||
|
// if the start point is out of field, it is brought in
|
||
|
const int start_l = x_to_line(s_x);
|
||
|
const int start_c = y_to_col(s_y);
|
||
|
const int start_pos = start_l * COLS + start_c;
|
||
|
|
||
|
// define objective (go to goal or a specific point)
|
||
|
int end_l, end_c;
|
||
|
if(!go_to_goal){
|
||
|
end_l = x_to_line(opt_t_x);
|
||
|
end_c = y_to_col(opt_t_y);
|
||
|
}else{
|
||
|
end_l = IN_GOAL_LINE;
|
||
|
}
|
||
|
|
||
|
// define board limits considering the initial and final positions (and obstacles in the next section, and goals after that)
|
||
|
int l_min = min(start_l, end_l);
|
||
|
int l_max = max(start_l, end_l);
|
||
|
int c_min, c_max;
|
||
|
if(go_to_goal){
|
||
|
c_min = min(start_c,119);
|
||
|
c_max = max(start_c,101);
|
||
|
}else{
|
||
|
c_min = min(start_c, end_c);
|
||
|
c_max = max(start_c, end_c);
|
||
|
}
|
||
|
|
||
|
if (!allow_out_of_bounds){ // workspace must contain a bit of empty field if out of bounds is not allowed
|
||
|
l_min = min(l_min, 306);
|
||
|
l_max = max(14, l_max);
|
||
|
c_min = min(c_min, 206);
|
||
|
c_max = max(14, c_max);
|
||
|
}
|
||
|
|
||
|
//======================================================== Initialize A*
|
||
|
|
||
|
Node* open_root = nullptr;
|
||
|
Node board[LINES*COLS];
|
||
|
unsigned int node_state[LINES*COLS] = {0}; //0-unknown, 1-open, 2-closed
|
||
|
|
||
|
//======================================================== Populate board 1: convert obstacles to cost
|
||
|
for(int ob=0; ob<obst_size; ob+=5){
|
||
|
int lin = x_to_line(obstacles[ob]);
|
||
|
int col = y_to_col(obstacles[ob+1]);
|
||
|
float hard_radius = fmaxf( 0, fminf(obstacles[ob+2], MAX_RADIUS) );
|
||
|
float soft_radius = fmaxf( 0, fminf(obstacles[ob+3], MAX_RADIUS) );
|
||
|
float force = obstacles[ob+4];
|
||
|
float f_per_m = force / soft_radius; // force per meter
|
||
|
|
||
|
int max_r = int( fmaxf(hard_radius, soft_radius)*10.f+1e-4 ); // add epsilon to avoid potential rounding error in expansion groups
|
||
|
l_min = min(l_min, lin - max_r - 1 );
|
||
|
l_max = max(l_max, lin + max_r + 1 );
|
||
|
c_min = min(c_min, col - max_r - 1 );
|
||
|
c_max = max(c_max, col + max_r + 1 );
|
||
|
|
||
|
//=============================================================== hard radius
|
||
|
int i=0;
|
||
|
for(; i<expansion_positions_no and expansion_pos_dist[i] <= hard_radius; i++){
|
||
|
int l = lin + expansion_pos_l[i];
|
||
|
int c = col + expansion_pos_c[i];
|
||
|
if(l>=0 and c>=0 and l<LINES and c<COLS){
|
||
|
board_cost[l*COLS+c] = -3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//=============================================================== soft radius
|
||
|
|
||
|
for(; i<expansion_positions_no and expansion_pos_dist[i] <= soft_radius; i++){
|
||
|
int l = lin + expansion_pos_l[i];
|
||
|
int c = col + expansion_pos_c[i];
|
||
|
int p = l*COLS+c;
|
||
|
float cost = board_cost[p];
|
||
|
float fr = force-(f_per_m * expansion_pos_dist[i]);
|
||
|
|
||
|
if(l>=0 and c>=0 and l<LINES and c<COLS and cost > wall_index and cost < fr){
|
||
|
board_cost[p] = fr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// adjust board limits if working area overlaps goal area (which includes walking margin)
|
||
|
if (c_max > 96 and c_min < 124){ // Otherwise it does not overlap any goal
|
||
|
if (l_max > 1 and l_min < 12 ){ // Overlaps our goal
|
||
|
l_max = max(12,l_max); // Extend working area to include our goal
|
||
|
l_min = min(l_min,1);
|
||
|
c_max = max(124,c_max);
|
||
|
c_min = min(c_min,96);
|
||
|
}
|
||
|
if (l_max > 308 and l_min < 319 ){ // Overlaps their goal
|
||
|
l_max = max(319,l_max); // Extend working area to include their goal
|
||
|
l_min = min(l_min,308);
|
||
|
c_max = max(124,c_max);
|
||
|
c_min = min(c_min,96);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//======================================================== Populate board 2: add objective
|
||
|
// Explanation: if objective is not accessible we do not add it to the map, although its reference still exists.
|
||
|
// Therefore, we know how far we are from that reference, but it cannot be reached.
|
||
|
// Even if we are on top of the objective, the idea is to get away, to the nearest valid position.
|
||
|
if(!go_to_goal){
|
||
|
float *end_cost = &board_cost[end_l*COLS+end_c];
|
||
|
if(*end_cost > wall_index){
|
||
|
*end_cost = -1;
|
||
|
}
|
||
|
}else{
|
||
|
for(int i=IN_GOAL_LINE*COLS+101; i<=IN_GOAL_LINE*COLS+119; i++){
|
||
|
if(board_cost[i] > wall_index){
|
||
|
board_cost[i] = -1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// add board limits as an additional restriction to workspace
|
||
|
l_min = max(0, l_min);
|
||
|
l_max = min(l_max, 320);
|
||
|
c_min = max(0, c_min);
|
||
|
c_max = min(c_max, 220);
|
||
|
|
||
|
// add start node to open list (it will be closed right away, so there is not need to set it as open)
|
||
|
board[start_pos].g = 0; // This is needed to compute the cost of child nodes, but f is not needed because there are no comparisons with other nodes in the open BST
|
||
|
board[start_pos].parent = nullptr; //This is where the path ends
|
||
|
open_root = open::insert(&board[start_pos], open_root);
|
||
|
int measure_timeout=0;
|
||
|
Node* best_node = &board[start_pos]; // save best node based on distance to goal (useful if impossible/timeout to get best path)
|
||
|
|
||
|
float best_node_dist = std::numeric_limits<float>::max(); // infinite distance if start is itself unreachable
|
||
|
if(board_cost[start_pos] > wall_index){
|
||
|
best_node_dist = diagonal_distance(go_to_goal,start_l,start_c,end_l,end_c);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//======================================================== A* algorithm
|
||
|
while (open_root != nullptr){
|
||
|
|
||
|
// Get next best node (lowest predicted total cost (f))
|
||
|
Node* curr_node = min_node;
|
||
|
const int curr_pos = curr_node - board;
|
||
|
const int curr_line = curr_pos / COLS;
|
||
|
const int curr_col = curr_pos % COLS;
|
||
|
const float curr_cost = board_cost[curr_pos];
|
||
|
measure_timeout = (measure_timeout+1) & 31; // check timeout at every 32 iterations
|
||
|
|
||
|
// save best node based on distance to goal (useful if impossible/timeout)
|
||
|
if(curr_cost > wall_index){
|
||
|
float dd = diagonal_distance(go_to_goal,curr_line,curr_col,end_l,end_c);
|
||
|
if(best_node_dist > dd){
|
||
|
best_node = curr_node;
|
||
|
best_node_dist = dd;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
open_root = open::pop(open_root);
|
||
|
node_state[curr_pos] = 2;
|
||
|
|
||
|
// Check if we reached objective
|
||
|
if( curr_cost == -1 ){
|
||
|
// replace end point with correct coordinates instead of discrete version if the optional target was defined (not going to goal)
|
||
|
build_final_path(best_node, board, 0, !go_to_goal, opt_t_x, opt_t_y);
|
||
|
return;
|
||
|
}
|
||
|
if( measure_timeout==0 and duration_cast<microseconds>(high_resolution_clock::now() - t1).count() > timeout_us ){
|
||
|
build_final_path(best_node, board, 1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Expand child nodes
|
||
|
bool rcol_ok = curr_col < c_max;
|
||
|
bool lcol_ok = curr_col > c_min;
|
||
|
|
||
|
if(curr_line > l_min){
|
||
|
int line = curr_line - 1;
|
||
|
int col = curr_col - 1;
|
||
|
int pos = curr_pos - COLS - 1;
|
||
|
float cost = board_cost[pos];
|
||
|
int state = node_state[pos];
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost) and lcol_ok){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,line,col,end_l,end_c,node_state,SQRT2);
|
||
|
}
|
||
|
|
||
|
col++;
|
||
|
pos++;
|
||
|
cost = board_cost[pos];
|
||
|
state = node_state[pos];
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost)){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,line,col,end_l,end_c,node_state,1);
|
||
|
}
|
||
|
|
||
|
col++;
|
||
|
pos++;
|
||
|
cost = board_cost[pos];
|
||
|
state = node_state[pos];
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost) and rcol_ok){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,line,col,end_l,end_c,node_state,SQRT2);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
if(curr_line < l_max){
|
||
|
int line = curr_line + 1;
|
||
|
int col = curr_col - 1;
|
||
|
int pos = curr_pos + COLS - 1;
|
||
|
float cost = board_cost[pos];
|
||
|
int state = node_state[pos];
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost) and lcol_ok){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,line,col,end_l,end_c,node_state,SQRT2);
|
||
|
}
|
||
|
|
||
|
col++;
|
||
|
pos++;
|
||
|
cost = board_cost[pos];
|
||
|
state = node_state[pos];
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost)){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,line,col,end_l,end_c,node_state,1);
|
||
|
}
|
||
|
|
||
|
col++;
|
||
|
pos++;
|
||
|
cost = board_cost[pos];
|
||
|
state = node_state[pos];
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost) and rcol_ok){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,line,col,end_l,end_c,node_state,SQRT2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
{
|
||
|
int col = curr_col - 1;
|
||
|
int pos = curr_pos - 1;
|
||
|
float cost = board_cost[pos];
|
||
|
int state = node_state[pos];
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost) and lcol_ok){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,curr_line,col,end_l,end_c,node_state,1);
|
||
|
}
|
||
|
|
||
|
col+=2;
|
||
|
pos+=2;
|
||
|
cost = board_cost[pos];
|
||
|
state = node_state[pos];
|
||
|
|
||
|
|
||
|
// check if not an obstacle and if node is not closed (child can be as inaccessible as current pos)
|
||
|
if (state!=2 and !(cost <= wall_index and cost < curr_cost) and rcol_ok){
|
||
|
open_root = expand_child(open_root,cost,wall_index,curr_node,board,pos,state,go_to_goal,curr_line,col,end_l,end_c,node_state,1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
build_final_path(best_node, board, 2);
|
||
|
return;
|
||
|
}
|