You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Dribble/agent/Agent.py

287 lines
14 KiB
Python

9 months ago
from agent.Base_Agent import Base_Agent
from math_ops.Math_Ops import Math_Ops as M
import math
import numpy as np
class Agent(Base_Agent):
def __init__(self, host:str, agent_port:int, monitor_port:int, unum:int,
team_name:str, enable_log, enable_draw, wait_for_server=True, is_fat_proxy=False) -> None:
# define robot type
robot_type = (0,1,1,1,2,3,3,3,4,4,4)[unum-1]
# Initialize base agent
# Args: Server IP, Agent Port, Monitor Port, Uniform No., Robot Type, Team Name, Enable Log, Enable Draw, play mode correction, Wait for Server, Hear Callback
super().__init__(host, agent_port, monitor_port, unum, robot_type, team_name, enable_log, enable_draw, True, wait_for_server, None)
self.enable_draw = enable_draw
self.state = 0 # 0-Normal, 1-Getting up, 2-Kicking
self.kick_direction = 0
self.kick_distance = 0
self.fat_proxy_cmd = "" if is_fat_proxy else None
self.fat_proxy_walk = np.zeros(3) # filtered walk parameters for fat proxy
self.init_pos = ([-14,0],[-9,-5],[-9,0],[-9,5],[-5,-5],[-5,0],[-5,5],[-1,-6],[-1,-2.5],[-1,2.5],[-1,6])[unum-1] # initial formation
9 months ago
def dribble(self, target_2d=(15, 0), avoid_obstacles=True):
if avoid_obstacles:
next_pos, next_rel_ori = self.path_manager.get_dribble_path(optional_2d_target=target_2d)
else:
distance_to_final_target = np.linalg.norm(target_2d - self.loc_head_position[:2])
return self.behavior.execute("Dribble", next_rel_ori,
False) # Args: target, is_target_abs, ori, is_ori_abs, distance
9 months ago
def beam(self, avoid_center_circle=False):
r = self.world.robot
pos = self.init_pos[:] # copy position list
self.state = 0
# Avoid center circle by moving the player back
if avoid_center_circle and np.linalg.norm(self.init_pos) < 2.5:
pos[0] = -2.3
if np.linalg.norm(pos - r.loc_head_position[:2]) > 0.1 or self.behavior.is_ready("Get_Up"):
self.scom.commit_beam(pos, M.vector_angle((-pos[0],-pos[1]))) # beam to initial position, face coordinate (0,0)
else:
if self.fat_proxy_cmd is None: # normal behavior
self.behavior.execute("Zero_Bent_Knees_Auto_Head")
else: # fat proxy behavior
self.fat_proxy_cmd += "(proxy dash 0 0 0)"
self.fat_proxy_walk = np.zeros(3) # reset fat proxy walk
def move(self, target_2d=(0,0), orientation=None, is_orientation_absolute=True,
avoid_obstacles=True, priority_unums=[], is_aggressive=False, timeout=3000):
'''
Walk to target position
Parameters
----------
target_2d : array_like
2D target in absolute coordinates
orientation : float
absolute or relative orientation of torso, in degrees
set to None to go towards the target (is_orientation_absolute is ignored)
is_orientation_absolute : bool
True if orientation is relative to the field, False if relative to the robot's torso
avoid_obstacles : bool
True to avoid obstacles using path planning (maybe reduce timeout arg if this function is called multiple times per simulation cycle)
priority_unums : list
list of teammates to avoid (since their role is more important)
is_aggressive : bool
if True, safety margins are reduced for opponents
timeout : float
restrict path planning to a maximum duration (in microseconds)
'''
r = self.world.robot
if self.fat_proxy_cmd is not None: # fat proxy behavior
self.fat_proxy_move(target_2d, orientation, is_orientation_absolute) # ignore obstacles
return
if avoid_obstacles:
target_2d, _, distance_to_final_target = self.path_manager.get_path_to_target(
target_2d, priority_unums=priority_unums, is_aggressive=is_aggressive, timeout=timeout)
else:
distance_to_final_target = np.linalg.norm(target_2d - r.loc_head_position[:2])
self.behavior.execute("Walk", target_2d, True, orientation, is_orientation_absolute, distance_to_final_target) # Args: target, is_target_abs, ori, is_ori_abs, distance
def kick(self, kick_direction=None, kick_distance=None, abort=False, enable_pass_command=False):
'''
Walk to ball and kick
Parameters
----------
kick_direction : float
kick direction, in degrees, relative to the field
kick_distance : float
kick distance in meters
abort : bool
True to abort.
The method returns True upon successful abortion, which is immediate while the robot is aligning itself.
However, if the abortion is requested during the kick, it is delayed until the kick is completed.
avoid_pass_command : bool
When False, the pass command will be used when at least one opponent is near the ball
Returns
-------
finished : bool
Returns True if the behavior finished or was successfully aborted.
'''
if self.min_opponent_ball_dist < 1.45 and enable_pass_command:
self.scom.commit_pass_command()
self.kick_direction = self.kick_direction if kick_direction is None else kick_direction
self.kick_distance = self.kick_distance if kick_distance is None else kick_distance
if self.fat_proxy_cmd is None: # normal behavior
return self.behavior.execute("Basic_Kick", self.kick_direction, abort) # Basic_Kick has no kick distance control
else: # fat proxy behavior
return self.fat_proxy_kick()
def think_and_send(self):
w = self.world
9 months ago
r = self.world.robot
9 months ago
my_head_pos_2d = r.loc_head_position[:2]
my_ori = r.imu_torso_orientation
ball_2d = w.ball_abs_pos[:2]
ball_vec = ball_2d - my_head_pos_2d
ball_dir = M.vector_angle(ball_vec)
ball_dist = np.linalg.norm(ball_vec)
ball_sq_dist = ball_dist * ball_dist # for faster comparisons
ball_speed = np.linalg.norm(w.get_ball_abs_vel(6)[:2])
behavior = self.behavior
goal_dir = M.target_abs_angle(ball_2d,(15.05,0))
path_draw_options = self.path_manager.draw_options
PM = w.play_mode
PM_GROUP = w.play_mode_group
#--------------------------------------- 1. Preprocessing
slow_ball_pos = w.get_predicted_ball_pos(0.5) # predicted future 2D ball position when ball speed <= 0.5 m/s
# list of squared distances between teammates (including self) and slow ball (sq distance is set to 1000 in some conditions)
teammates_ball_sq_dist = [np.sum((p.state_abs_pos[:2] - slow_ball_pos) ** 2) # squared distance between teammate and ball
if p.state_last_update != 0 and (w.time_local_ms - p.state_last_update <= 360 or p.is_self) and not p.state_fallen
else 1000 # force large distance if teammate does not exist, or its state info is not recent (360 ms), or it has fallen
for p in w.teammates ]
# list of squared distances between opponents and slow ball (sq distance is set to 1000 in some conditions)
opponents_ball_sq_dist = [np.sum((p.state_abs_pos[:2] - slow_ball_pos) ** 2) # squared distance between teammate and ball
if p.state_last_update != 0 and w.time_local_ms - p.state_last_update <= 360 and not p.state_fallen
else 1000 # force large distance if opponent does not exist, or its state info is not recent (360 ms), or it has fallen
for p in w.opponents ]
min_teammate_ball_sq_dist = min(teammates_ball_sq_dist)
self.min_teammate_ball_dist = math.sqrt(min_teammate_ball_sq_dist) # distance between ball and closest teammate
self.min_opponent_ball_dist = math.sqrt(min(opponents_ball_sq_dist)) # distance between ball and closest opponent
9 months ago
if r.dribbling_state == "In":
active_player_unum = r.unum
else:
active_player_unum = teammates_ball_sq_dist.index(min_teammate_ball_sq_dist) + 1
9 months ago
#--------------------------------------- 2. Decide action
if PM == w.M_GAME_OVER:
pass
elif PM_GROUP == w.MG_ACTIVE_BEAM:
self.beam()
elif PM_GROUP == w.MG_PASSIVE_BEAM:
self.beam(True) # avoid center circle
elif self.state == 1 or (behavior.is_ready("Get_Up") and self.fat_proxy_cmd is None):
9 months ago
r.dribbling_state = "Out"
9 months ago
self.state = 0 if behavior.execute("Get_Up") else 1 # return to normal state if get up behavior has finished
elif PM == w.M_OUR_KICKOFF:
if r.unum == 9:
self.kick(120,3) # no need to change the state when PM is not Play On
else:
self.move(self.init_pos, orientation=ball_dir) # walk in place
elif PM == w.M_THEIR_KICKOFF:
self.move(self.init_pos, orientation=ball_dir) # walk in place
elif active_player_unum != r.unum: # I am not the active player
if r.unum == 1: # I am the goalkeeper
self.move(self.init_pos, orientation=ball_dir) # walk in place
else:
# compute basic formation position based on ball position
new_x = max(0.5,(ball_2d[0]+15)/15) * (self.init_pos[0]+15) - 15
if self.min_teammate_ball_dist < self.min_opponent_ball_dist:
new_x = min(new_x + 3.5, 13) # advance if team has possession
self.move((new_x,self.init_pos[1]), orientation=ball_dir, priority_unums=[active_player_unum])
else: # I am the active player
9 months ago
9 months ago
path_draw_options(enable_obstacles=True, enable_path=True, use_team_drawing_channel=True) # enable path drawings for active player (ignored if self.enable_draw is False)
enable_pass_command = (PM == w.M_PLAY_ON and ball_2d[0]<6)
if r.unum == 1 and PM_GROUP == w.MG_THEIR_KICK: # goalkeeper during their kick
self.move(self.init_pos, orientation=ball_dir) # walk in place
if PM == w.M_OUR_CORNER_KICK:
self.kick( -np.sign(ball_2d[1])*95, 5.5) # kick the ball into the space in front of the opponent's goal
# no need to change the state when PM is not Play On
elif self.min_opponent_ball_dist + 0.5 < self.min_teammate_ball_dist: # defend if opponent is considerably closer to the ball
if self.state == 2: # commit to kick while aborting
9 months ago
self.dribble()
r.dribbling_state = "In"
9 months ago
else: # move towards ball, but position myself between ball and our goal
self.move(slow_ball_pos + M.normalize_vec((-16,0) - slow_ball_pos) * 0.2, is_aggressive=True)
9 months ago
r.dribbling_state = "Out"
9 months ago
else:
9 months ago
self.dribble()
r.dribbling_state = "In"
9 months ago
path_draw_options(enable_obstacles=False, enable_path=False) # disable path drawings
#--------------------------------------- 3. Broadcast
self.radio.broadcast()
#--------------------------------------- 4. Send to server
if self.fat_proxy_cmd is None: # normal behavior
self.scom.commit_and_send( r.get_command() )
else: # fat proxy behavior
self.scom.commit_and_send( self.fat_proxy_cmd.encode() )
self.fat_proxy_cmd = ""
#---------------------- annotations for debugging
if self.enable_draw:
d = w.draw
if active_player_unum == r.unum:
d.point(slow_ball_pos, 3, d.Color.pink, "status", False) # predicted future 2D ball position when ball speed <= 0.5 m/s
d.point(w.ball_2d_pred_pos[-1], 5, d.Color.pink, "status", False) # last ball prediction
d.annotation((*my_head_pos_2d, 0.6), "I've got it!" , d.Color.yellow, "status")
else:
d.clear("status")
#--------------------------------------- Fat proxy auxiliary methods
def fat_proxy_kick(self):
w = self.world
r = self.world.robot
ball_2d = w.ball_abs_pos[:2]
my_head_pos_2d = r.loc_head_position[:2]
if np.linalg.norm(ball_2d - my_head_pos_2d) < 0.25:
# fat proxy kick arguments: power [0,10]; relative horizontal angle [-180,180]; vertical angle [0,70]
self.fat_proxy_cmd += f"(proxy kick 10 {M.normalize_deg( self.kick_direction - r.imu_torso_orientation ):.2f} 20)"
self.fat_proxy_walk = np.zeros(3) # reset fat proxy walk
return True
else:
self.fat_proxy_move(ball_2d-(-0.1,0), None, True) # ignore obstacles
return False
def fat_proxy_move(self, target_2d, orientation, is_orientation_absolute):
r = self.world.robot
target_dist = np.linalg.norm(target_2d - r.loc_head_position[:2])
target_dir = M.target_rel_angle(r.loc_head_position[:2], r.imu_torso_orientation, target_2d)
if target_dist > 0.1 and abs(target_dir) < 8:
self.fat_proxy_cmd += (f"(proxy dash {100} {0} {0})")
return
if target_dist < 0.1:
if is_orientation_absolute:
orientation = M.normalize_deg( orientation - r.imu_torso_orientation )
target_dir = np.clip(orientation, -60, 60)
self.fat_proxy_cmd += (f"(proxy dash {0} {0} {target_dir:.1f})")
else:
self.fat_proxy_cmd += (f"(proxy dash {20} {0} {target_dir:.1f})")