You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
105 lines
4.6 KiB
Python
105 lines
4.6 KiB
Python
9 months ago
|
from math_ops.Math_Ops import Math_Ops as M
|
||
|
from world.World import World
|
||
|
import numpy as np
|
||
|
|
||
|
class Head():
|
||
|
FIELD_FLAGS = World.FLAGS_CORNERS_POS + World.FLAGS_POSTS_POS
|
||
|
HEAD_PITCH = -35
|
||
|
|
||
|
def __init__(self, world : World) -> None:
|
||
|
self.world = world
|
||
|
self.look_left = True
|
||
|
self.state = 0
|
||
|
|
||
|
|
||
|
def execute(self):
|
||
|
'''
|
||
|
Try to compute best head orientation if possible, otherwise look around
|
||
|
|
||
|
state:
|
||
|
0 - Adjust position - ball is in FOV and robot can self-locate
|
||
|
1..TIMEOUT-1 - Guided search - attempt to use recent visual/radio information to guide the search
|
||
|
TIMEOUT - Random search - look around (default mode after guided search fails by timeout)
|
||
|
'''
|
||
|
TIMEOUT = 30
|
||
|
w = self.world
|
||
|
r = w.robot
|
||
|
can_self_locate = r.loc_last_update > w.time_local_ms - w.VISUALSTEP_MS
|
||
|
|
||
|
#--------------------------------------- A. Ball is in FOV and robot can self-locate
|
||
|
|
||
|
if w.ball_last_seen > w.time_local_ms - w.VISUALSTEP_MS: # ball is in FOV
|
||
|
if can_self_locate:
|
||
|
best_dir = self.compute_best_direction(can_self_locate, use_ball_from_vision=True)
|
||
|
self.state = 0
|
||
|
elif self.state < TIMEOUT:
|
||
|
#--------------------------------------- B. Ball is in FOV but robot cannot currently self-locate
|
||
|
best_dir = self.compute_best_direction(can_self_locate, use_ball_from_vision=True)
|
||
|
self.state += 1 # change to guided search and increment time
|
||
|
elif self.state < TIMEOUT:
|
||
|
#--------------------------------------- C. Ball is not in FOV
|
||
|
best_dir = self.compute_best_direction(can_self_locate)
|
||
|
self.state += 1 # change to guided search and increment time
|
||
|
|
||
|
|
||
|
if self.state == TIMEOUT: # Random search
|
||
|
|
||
|
if w.ball_last_seen > w.time_local_ms - w.VISUALSTEP_MS: # Ball is in FOV (search 45 deg to both sides of the ball)
|
||
|
ball_dir = M.vector_angle(w.ball_rel_torso_cart_pos[:2])
|
||
|
targ = np.clip(ball_dir + (45 if self.look_left else -45), -119, 119)
|
||
|
else: # Ball is not in FOV (search 119 deg to both sides)
|
||
|
targ = 119 if self.look_left else -119
|
||
|
|
||
|
if r.set_joints_target_position_direct([0,1], np.array([targ,Head.HEAD_PITCH]), False) <= 0:
|
||
|
self.look_left = not self.look_left
|
||
|
|
||
|
else: # Adjust position or guided search
|
||
|
r.set_joints_target_position_direct([0,1], np.array([best_dir,Head.HEAD_PITCH]), False)
|
||
|
|
||
|
|
||
|
def compute_best_direction(self, can_self_locate, use_ball_from_vision=False):
|
||
|
FOV_MARGIN = 15 # safety margin, avoid margin horizontally
|
||
|
SAFE_RANGE = 120 - FOV_MARGIN*2
|
||
|
HALF_RANGE = SAFE_RANGE / 2
|
||
|
|
||
|
w = self.world
|
||
|
r = w.robot
|
||
|
|
||
|
if use_ball_from_vision:
|
||
|
ball_2d_dist = np.linalg.norm(w.ball_rel_torso_cart_pos[:2])
|
||
|
else:
|
||
|
ball_2d_dist = np.linalg.norm(w.ball_abs_pos[:2]-r.loc_head_position[:2])
|
||
|
|
||
|
if ball_2d_dist > 0.12:
|
||
|
if use_ball_from_vision:
|
||
|
ball_dir = M.vector_angle(w.ball_rel_torso_cart_pos[:2])
|
||
|
else:
|
||
|
ball_dir = M.target_rel_angle(r.loc_head_position, r.imu_torso_orientation, w.ball_abs_pos)
|
||
|
else: # ball is very close to robot
|
||
|
ball_dir = 0
|
||
|
|
||
|
flags_diff = dict()
|
||
|
|
||
|
# iterate flags
|
||
|
for f in Head.FIELD_FLAGS:
|
||
|
flag_dir = M.target_rel_angle(r.loc_head_position, r.imu_torso_orientation, f)
|
||
|
diff = M.normalize_deg( flag_dir - ball_dir )
|
||
|
if abs(diff) < HALF_RANGE and can_self_locate:
|
||
|
return ball_dir # return ball direction if robot can self-locate
|
||
|
flags_diff[f] = diff
|
||
|
|
||
|
|
||
|
closest_flag = min( flags_diff, key=lambda k: abs(flags_diff[k]) )
|
||
|
closest_diff = flags_diff[closest_flag]
|
||
|
|
||
|
if can_self_locate: # at this point, if it can self-locate, then abs(closest_diff) > HALF_RANGE
|
||
|
# return position that centers the ball as much as possible in the FOV, including the nearest flag if possible
|
||
|
final_diff = min( abs(closest_diff) - HALF_RANGE, SAFE_RANGE ) * np.sign(closest_diff)
|
||
|
else:
|
||
|
# position that centers the flag as much as possible, until it is seen, while keeping the ball in the FOV
|
||
|
final_diff = np.clip( closest_diff, -SAFE_RANGE, SAFE_RANGE )
|
||
|
# saturate instead of normalizing angle to avoid a complete neck rotation
|
||
|
return np.clip(ball_dir + final_diff, -119, 119)
|
||
|
|
||
|
|
||
|
return M.normalize_deg( ball_dir + final_diff )
|