You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Dribble/world/World.py

431 lines
22 KiB
Python

9 months ago
from collections import deque
from cpp.ball_predictor import ball_predictor
from cpp.localization import localization
from logs.Logger import Logger
from math import atan2, pi
from math_ops.Matrix_4x4 import Matrix_4x4
from world.commons.Draw import Draw
from world.commons.Other_Robot import Other_Robot
from world.Robot import Robot
import numpy as np
class World():
STEPTIME = 0.02 # Fixed step time
STEPTIME_MS = 20 # Fixed step time in milliseconds
VISUALSTEP = 0.04 # Fixed visual step time
VISUALSTEP_MS = 40 # Fixed visual step time in milliseconds
# play modes in our favor
M_OUR_KICKOFF = 0
M_OUR_KICK_IN = 1
M_OUR_CORNER_KICK = 2
M_OUR_GOAL_KICK = 3
M_OUR_FREE_KICK = 4
M_OUR_PASS = 5
M_OUR_DIR_FREE_KICK = 6
M_OUR_GOAL = 7
M_OUR_OFFSIDE = 8
# play modes in their favor
M_THEIR_KICKOFF = 9
M_THEIR_KICK_IN = 10
M_THEIR_CORNER_KICK = 11
M_THEIR_GOAL_KICK = 12
M_THEIR_FREE_KICK = 13
M_THEIR_PASS = 14
M_THEIR_DIR_FREE_KICK = 15
M_THEIR_GOAL = 16
M_THEIR_OFFSIDE = 17
# neutral play modes
M_BEFORE_KICKOFF = 18
M_GAME_OVER = 19
M_PLAY_ON = 20
# play mode groups
MG_OUR_KICK = 0
MG_THEIR_KICK = 1
MG_ACTIVE_BEAM = 2
MG_PASSIVE_BEAM = 3
MG_OTHER = 4 # play on, game over
FLAGS_CORNERS_POS = ((-15,-10,0), (-15,+10,0), (+15,-10,0), (+15,+10,0))
FLAGS_POSTS_POS = ((-15,-1.05,0.8),(-15,+1.05,0.8),(+15,-1.05,0.8),(+15,+1.05,0.8))
def __init__(self,robot_type:int, team_name:str, unum:int, apply_play_mode_correction:bool,
enable_draw:bool, logger:Logger, host:str) -> None:
self.team_name = team_name # Name of our team
self.team_name_opponent : str = None # Name of opponent team
self.apply_play_mode_correction = apply_play_mode_correction # True to adjust ball position according to play mode
self.step = 0 # Total number of received simulation steps (always in sync with self.time_local_ms)
self.time_server = 0.0 # Time, in seconds, as indicated by the server (this time is NOT reliable, use only for synchronization between agents)
self.time_local_ms = 0 # Reliable simulation time in milliseconds, use this when possible (it is incremented 20ms for every TCP message)
self.time_game = 0.0 # Game time, in seconds, as indicated by the server
self.goals_scored = 0 # Goals score by our team
self.goals_conceded = 0 # Goals conceded by our team
self.team_side_is_left : bool = None # True if our team plays on the left side (this value is later changed by the world parser)
self.play_mode = None # Play mode of the soccer game, provided by the server
self.play_mode_group = None # Certain play modes share characteristics, so it makes sense to group them
self.flags_corners : dict = None # corner flags, key=(x,y,z), always assume we play on the left side
self.flags_posts : dict = None # goal posts, key=(x,y,z), always assume we play on the left side
self.ball_rel_head_sph_pos = np.zeros(3) # Ball position relative to head (spherical coordinates) (m, deg, deg)
self.ball_rel_head_cart_pos = np.zeros(3) # Ball position relative to head (cartesian coordinates) (m)
self.ball_rel_torso_cart_pos = np.zeros(3) # Ball position relative to torso (cartesian coordinates) (m)
self.ball_rel_torso_cart_pos_history = deque(maxlen=20) # Ball position relative to torso history (queue with up to 20 old positions at intervals of 0.04s, where index 0 is the previous position)
self.ball_abs_pos = np.zeros(3) # Ball absolute position (up to date if self.ball_is_visible and self.robot.loc_is_up_to_date) (m)
self.ball_abs_pos_history = deque(maxlen=20) # Ball absolute position history (queue with up to 20 old positions at intervals of 0.04s, where index 0 is the previous position)
self.ball_abs_pos_last_update = 0 # World.time_local_ms when self.ball_abs_pos was last updated by vision or radio
self.ball_abs_vel = np.zeros(3) # Ball velocity vector based on the last 2 known values of self.ball_abs_pos (m/s) (Warning: noisy if ball is distant, use instead get_ball_abs_vel)
self.ball_abs_speed = 0 # Ball scalar speed based on the last 2 known values of self.ball_abs_pos (m/s) (Warning: noisy if ball is distant, use instead ||get_ball_abs_vel||)
self.ball_is_visible = False # True if the last server message contained vision information related to the ball
self.is_ball_abs_pos_from_vision = False # True if ball_abs_pos originated from vision, False if it originated from radio
self.ball_last_seen = 0 # World.time_local_ms when ball was last seen (note: may be different from self.ball_abs_pos_last_update)
self.ball_cheat_abs_pos = np.zeros(3) # Absolute ball position provided by the server as cheat (m)
self.ball_cheat_abs_vel = np.zeros(3) # Absolute velocity vector based on the last 2 values of self.ball_cheat_abs_pos (m/s)
self.ball_2d_pred_pos = np.zeros((1,2)) # prediction of current and future 2D ball positions*
self.ball_2d_pred_vel = np.zeros((1,2)) # prediction of current and future 2D ball velocities*
self.ball_2d_pred_spd = np.zeros(1) # prediction of current and future 2D ball linear speeds*
# *at intervals of 0.02 s until ball comes to a stop or gets out of bounds (according to prediction)
self.lines = np.zeros((30,6)) # Position of visible lines, relative to head, start_pos+end_pos (spherical coordinates) (m, deg, deg, m, deg, deg)
self.line_count = 0 # Number of visible lines
self.vision_last_update = 0 # World.time_local_ms when last vision update was received
self.vision_is_up_to_date = False # True if the last server message contained vision information
self.teammates = [Other_Robot(i, True ) for i in range(1,12)] # List of teammates, ordered by unum
self.opponents = [Other_Robot(i, False) for i in range(1,12)] # List of opponents, ordered by unum
self.teammates[unum-1].is_self = True # This teammate is self
self.draw = Draw(enable_draw, unum, host, 32769) # Draw object for current player
self.team_draw = Draw(enable_draw, 0, host, 32769) # Draw object shared with teammates
self.logger = logger
self.robot = Robot(unum, robot_type)
9 months ago
9 months ago
def log(self, msg:str):
'''
Shortcut for:
self.logger.write(msg, True, self.step)
Parameters
----------
msg : str
message to be written after the simulation step
'''
self.logger.write(msg, True, self.step)
def get_ball_rel_vel(self, history_steps:int):
'''
Get ball velocity, relative to torso (m/s)
Parameters
----------
history_steps : int
number of history steps to consider [1,20]
Examples
--------
get_ball_rel_vel(1) is equivalent to (current rel pos - last rel pos) / 0.04
get_ball_rel_vel(2) is equivalent to (current rel pos - rel pos 0.08s ago) / 0.08
get_ball_rel_vel(3) is equivalent to (current rel pos - rel pos 0.12s ago) / 0.12
'''
assert 1 <= history_steps <= 20, "Argument 'history_steps' must be in range [1,20]"
if len(self.ball_rel_torso_cart_pos_history) == 0:
return np.zeros(3)
h_step = min(history_steps, len(self.ball_rel_torso_cart_pos_history))
t = h_step * World.VISUALSTEP
return (self.ball_rel_torso_cart_pos - self.ball_rel_torso_cart_pos_history[h_step-1]) / t
def get_ball_abs_vel(self, history_steps:int):
'''
Get ball absolute velocity (m/s)
Parameters
----------
history_steps : int
number of history steps to consider [1,20]
Examples
--------
get_ball_abs_vel(1) is equivalent to (current abs pos - last abs pos) / 0.04
get_ball_abs_vel(2) is equivalent to (current abs pos - abs pos 0.08s ago) / 0.08
get_ball_abs_vel(3) is equivalent to (current abs pos - abs pos 0.12s ago) / 0.12
'''
assert 1 <= history_steps <= 20, "Argument 'history_steps' must be in range [1,20]"
if len(self.ball_abs_pos_history) == 0:
return np.zeros(3)
h_step = min(history_steps, len(self.ball_abs_pos_history))
t = h_step * World.VISUALSTEP
return (self.ball_abs_pos - self.ball_abs_pos_history[h_step-1]) / t
def get_predicted_ball_pos(self, max_speed):
'''
Get predicted 2D ball position when its predicted speed is equal to or less than `max_speed`
In case that position exceeds the prediction horizon, the last available prediction is returned
Parameters
----------
max_speed : float
maximum speed at which the ball will be moving at returned future position
'''
b_sp = self.ball_2d_pred_spd
index = len(b_sp) - max( 1, np.searchsorted(b_sp[::-1], max_speed, side='right') )
return self.ball_2d_pred_pos[index]
def get_intersection_point_with_ball(self, player_speed):
'''
Get 2D intersection point with moving ball, based on `self.ball_2d_pred_pos`
Parameters
----------
player_speed : float
average speed at which the robot will chase the ball
Returns
-------
2D intersection point : ndarray
2D intersection point with moving ball, assuming the robot moves at an avg. speed of `player_speed`
intersection distance : float
distance between current robot position and intersection point
'''
params = np.array([*self.robot.loc_head_position[:2], player_speed*0.02, *self.ball_2d_pred_pos.flat], np.float32)
pred_ret = ball_predictor.get_intersection(params)
return pred_ret[:2], pred_ret[2]
def update(self):
r = self.robot
PM = self.play_mode
W = World
# reset variables
r.loc_is_up_to_date = False
r.loc_head_z_is_up_to_date = False
# update play mode groups
if PM in (W.M_PLAY_ON, W.M_GAME_OVER): # most common group
self.play_mode_group = W.MG_OTHER
elif PM in (W.M_OUR_KICKOFF, W.M_OUR_KICK_IN, W.M_OUR_CORNER_KICK, W.M_OUR_GOAL_KICK,
W.M_OUR_OFFSIDE, W.M_OUR_PASS, W.M_OUR_DIR_FREE_KICK, W.M_OUR_FREE_KICK):
self.play_mode_group = W.MG_OUR_KICK
elif PM in (W.M_THEIR_KICK_IN, W.M_THEIR_CORNER_KICK, W.M_THEIR_GOAL_KICK, W.M_THEIR_OFFSIDE,
W.M_THEIR_PASS, W.M_THEIR_DIR_FREE_KICK, W.M_THEIR_FREE_KICK, W.M_THEIR_KICKOFF):
self.play_mode_group = W.MG_THEIR_KICK
elif PM in (W.M_BEFORE_KICKOFF, W.M_THEIR_GOAL):
self.play_mode_group = W.MG_ACTIVE_BEAM
elif PM in (W.M_OUR_GOAL,):
self.play_mode_group = W.MG_PASSIVE_BEAM
elif PM is not None:
raise ValueError(f'Unexpected play mode ID: {PM}')
r.update_pose() # update forward kinematics
if self.vision_is_up_to_date: # update vision based localization
# Prepare all variables for localization
feet_contact = np.zeros(6)
lf_contact = r.frp.get('lf', None)
rf_contact = r.frp.get('rf', None)
if lf_contact is not None:
feet_contact[0:3] = Matrix_4x4( r.body_parts["lfoot"].transform ).translate( lf_contact[0:3] , True).get_translation()
if rf_contact is not None:
feet_contact[3:6] = Matrix_4x4( r.body_parts["rfoot"].transform ).translate( rf_contact[0:3] , True).get_translation()
ball_pos = np.concatenate(( self.ball_rel_head_cart_pos, self.ball_cheat_abs_pos))
corners_list = [[key in self.flags_corners, 1.0, *key, *self.flags_corners.get(key,(0,0,0))] for key in World.FLAGS_CORNERS_POS]
posts_list = [[key in self.flags_posts , 0.0, *key, *self.flags_posts.get( key,(0,0,0))] for key in World.FLAGS_POSTS_POS]
all_landmarks = np.array(corners_list + posts_list, float)
# Compute localization
loc = localization.compute(
r.feet_toes_are_touching['lf'],
r.feet_toes_are_touching['rf'],
feet_contact,
self.ball_is_visible,
ball_pos,
r.cheat_abs_pos,
all_landmarks,
self.lines[0:self.line_count])
r.update_localization(loc, self.time_local_ms)
# Update self in teammates list (only the most useful parameters, add as needed)
me = self.teammates[r.unum-1]
me.state_last_update = r.loc_last_update
me.state_abs_pos = r.loc_head_position
me.state_fallen = r.loc_head_z < 0.3 # uses same criterion as for other teammates - not as reliable as player.behavior.is_ready("Get_Up")
me.state_orientation = r.loc_torso_orientation
me.state_ground_area = (r.loc_head_position[:2],0.2) # relevant for localization demo
# Save last ball position to history at every vision cycle (even if not up to date)
self.ball_abs_pos_history.appendleft(self.ball_abs_pos) # from vision or radio
self.ball_rel_torso_cart_pos_history.appendleft(self.ball_rel_head_cart_pos)
'''
Get ball position based on vision or play mode
Sources:
Corner kick position - rcssserver3d/plugin/soccer/soccerruleaspect/soccerruleaspect.cpp:1927 (May 2022)
Goal kick position - rcssserver3d/plugin/soccer/soccerruleaspect/soccerruleaspect.cpp:1900 (May 2022)
'''
ball = None
if self.apply_play_mode_correction:
if PM == W.M_OUR_CORNER_KICK:
ball = np.array([15, 5.483 if self.ball_abs_pos[1] > 0 else -5.483, 0.042], float)
elif PM == W.M_THEIR_CORNER_KICK:
ball = np.array([-15, 5.483 if self.ball_abs_pos[1] > 0 else -5.483, 0.042], float)
elif PM in [W.M_OUR_KICKOFF, W.M_THEIR_KICKOFF, W.M_OUR_GOAL, W.M_THEIR_GOAL]:
ball = np.array([0, 0, 0.042], float)
elif PM == W.M_OUR_GOAL_KICK:
ball = np.array([-14, 0, 0.042], float)
elif PM == W.M_THEIR_GOAL_KICK:
ball = np.array([14, 0, 0.042], float)
# Discard hard-coded ball position if robot is near that position (in favor of its own vision)
if ball is not None and np.linalg.norm(r.loc_head_position[:2] - ball[:2]) < 1:
ball = None
if ball is None and self.ball_is_visible and r.loc_is_up_to_date:
ball = r.loc_head_to_field_transform( self.ball_rel_head_cart_pos )
ball[2] = max(ball[2], 0.042) # lowest z = ball radius
if PM != W.M_BEFORE_KICKOFF: # for compatibility with tests without active soccer rules
ball[:2] = np.clip(ball[:2], [-15,-10], [15,10]) # force ball position to be inside field
# Update internal ball position (also updated by Radio)
if ball is not None:
time_diff = (self.time_local_ms - self.ball_abs_pos_last_update) / 1000
self.ball_abs_vel = (ball - self.ball_abs_pos) / time_diff
self.ball_abs_speed = np.linalg.norm(self.ball_abs_vel)
self.ball_abs_pos_last_update = self.time_local_ms
self.ball_abs_pos = ball
self.is_ball_abs_pos_from_vision = True
# Velocity decay for teammates and opponents (it is later neutralized if the velocity is updated)
for p in self.teammates:
p.state_filtered_velocity *= p.vel_decay
for p in self.opponents:
p.state_filtered_velocity *= p.vel_decay
# Update teammates and opponents
if r.loc_is_up_to_date:
for p in self.teammates:
if not p.is_self: # if teammate is not self
if p.is_visible: # if teammate is visible, execute full update
self.update_other_robot(p)
elif p.state_abs_pos is not None: # otherwise update its horizontal distance (assuming last known position)
p.state_horizontal_dist = np.linalg.norm(r.loc_head_position[:2] - p.state_abs_pos[:2])
for p in self.opponents:
if p.is_visible: # if opponent is visible, execute full update
self.update_other_robot(p)
elif p.state_abs_pos is not None: # otherwise update its horizontal distance (assuming last known position)
p.state_horizontal_dist = np.linalg.norm(r.loc_head_position[:2] - p.state_abs_pos[:2])
# Update prediction of ball position/velocity
if self.play_mode_group != W.MG_OTHER: # not 'play on' nor 'game over', so ball must be stationary
self.ball_2d_pred_pos = self.ball_abs_pos[:2].copy().reshape(1, 2)
self.ball_2d_pred_vel = np.zeros((1,2))
self.ball_2d_pred_spd = np.zeros(1)
elif self.ball_abs_pos_last_update == self.time_local_ms: # make new prediction for new ball position (from vision or radio)
params = np.array([*self.ball_abs_pos[:2], *np.copy(self.get_ball_abs_vel(6)[:2])], np.float32)
pred_ret = ball_predictor.predict_rolling_ball(params)
sample_no = len(pred_ret) // 5 * 2
self.ball_2d_pred_pos = pred_ret[:sample_no].reshape(-1, 2)
self.ball_2d_pred_vel = pred_ret[sample_no:sample_no*2].reshape(-1, 2)
self.ball_2d_pred_spd = pred_ret[sample_no*2:]
elif len(self.ball_2d_pred_pos) > 1: # otherwise, advance to next predicted step, if available
self.ball_2d_pred_pos = self.ball_2d_pred_pos[1:]
self.ball_2d_pred_vel = self.ball_2d_pred_vel[1:]
self.ball_2d_pred_spd = self.ball_2d_pred_spd[1:]
r.update_imu(self.time_local_ms) # update imu (must be executed after localization)
if self.ball_is_visible:
# Compute ball position, relative to torso
self.ball_rel_torso_cart_pos = r.head_to_body_part_transform("torso",self.ball_rel_head_cart_pos)
def update_other_robot(self,other_robot : Other_Robot):
'''
Update other robot state based on the relative position of visible body parts
(also updated by Radio, with the exception of state_orientation)
'''
o = other_robot
r = self.robot
# update body parts absolute positions
o.state_body_parts_abs_pos = o.body_parts_cart_rel_pos.copy()
for bp, pos in o.body_parts_cart_rel_pos.items():
# Using the IMU could be beneficial if we see other robots but can't self-locate
o.state_body_parts_abs_pos[bp] = r.loc_head_to_field_transform( pos, False )
# auxiliary variables
bps_apos = o.state_body_parts_abs_pos # read-only shortcut
bps_2d_apos_list = [v[:2] for v in bps_apos.values()] # list of body parts' 2D absolute positions
avg_2d_pt = np.average(bps_2d_apos_list, axis=0) # 2D avg pos of visible body parts
head_is_visible = 'head' in bps_apos
# evaluate robot's state (unchanged if head is not visible)
if head_is_visible:
o.state_fallen = bps_apos['head'][2] < 0.3
# compute velocity if head is visible
if o.state_abs_pos is not None:
time_diff = (self.time_local_ms - o.state_last_update) / 1000
if head_is_visible:
# if last position is 2D, we assume that the z coordinate did not change, so that v.z=0
old_p = o.state_abs_pos if len(o.state_abs_pos)==3 else np.append(o.state_abs_pos, bps_apos['head'][2])
velocity = (bps_apos['head'] - old_p) / time_diff
decay = o.vel_decay # neutralize decay in all axes
else: # if head is not visible, we only update the x & y components of the velocity
velocity = np.append( (avg_2d_pt - o.state_abs_pos[:2]) / time_diff, 0)
decay = (o.vel_decay,o.vel_decay,1) # neutralize decay (except in the z-axis)
# apply filter
if np.linalg.norm(velocity - o.state_filtered_velocity) < 4: # otherwise assume it was beamed
o.state_filtered_velocity /= decay # neutralize decay
o.state_filtered_velocity += o.vel_filter * (velocity-o.state_filtered_velocity)
# compute robot's position (preferably based on head)
if head_is_visible:
o.state_abs_pos = bps_apos['head'] # 3D head position, if head is visible
else:
o.state_abs_pos = avg_2d_pt # 2D avg pos of visible body parts
# compute robot's horizontal distance (head distance, or avg. distance of visible body parts)
o.state_horizontal_dist = np.linalg.norm(r.loc_head_position[:2] - o.state_abs_pos[:2])
# compute orientation based on pair of lower arms or feet, or average of both
lr_vec = None
if 'llowerarm' in bps_apos and 'rlowerarm' in bps_apos:
lr_vec = bps_apos['rlowerarm'] - bps_apos['llowerarm']
if 'lfoot' in bps_apos and 'rfoot' in bps_apos:
if lr_vec is None:
lr_vec = bps_apos['rfoot'] - bps_apos['lfoot']
else:
lr_vec = (lr_vec + (bps_apos['rfoot'] - bps_apos['lfoot'])) / 2
if lr_vec is not None:
o.state_orientation = atan2(lr_vec[1],lr_vec[0]) * 180 / pi + 90
# compute projection of player area on ground (circle)
if o.state_horizontal_dist < 4: # we don't need precision if the robot is farther than 4m
max_dist = np.max(np.linalg.norm(bps_2d_apos_list - avg_2d_pt, axis=1))
else:
max_dist = 0.2
o.state_ground_area = (avg_2d_pt,max_dist)
# update timestamp
o.state_last_update = self.time_local_ms