Files
FCP_gym/behaviors/custom/Stop/Stop.py
2025-11-19 08:08:22 -05:00

70 lines
2.9 KiB
Python

from agent.Base_Agent import Base_Agent
from behaviors.custom.Stop.Env import Env
from math_ops.Math_Ops import Math_Ops as M
from math_ops.Neural_Network import run_mlp
import numpy as np
import pickle
class Stop:
def __init__(self, base_agent: Base_Agent) -> None:
self.last_executed = 0
self.behavior = base_agent.behavior
self.path_manager = base_agent.path_manager
self.world = base_agent.world
self.description = "RL dribble"
self.auto_head = True
self.env = Env(base_agent, 0.9 if self.world.robot.type == 3 else 1.2)
with open(M.get_active_directory([
"/behaviors/custom/Stop/best_model.zip.pkl",
"/behaviors/custom/Stop/best_model.zip.pkl",
"/behaviors/custom/Stop/best_model.zip.pkl",
"/behaviors/custom/Stop/best_model.zip.pkl",
"/behaviors/custom/Stop/best_model.zip.pkl"
][self.world.robot.type]), 'rb') as f:
self.model = pickle.load(f)
def execute(self, reset):
'''
Parameters
----------
target_2d : array_like
2D target in absolute or relative coordinates (use is_target_absolute to specify)
is_target_absolute : bool
True if target_2d is in absolute coordinates, False if relative to robot's torso
orientation : float
absolute or relative orientation of torso, in degrees
set to None to go towards the target (is_orientation_absolute is ignored)
is_orientation_absolute : bool
True if orientation is relative to the field, False if relative to the robot's torso
distance : float
distance to final target [0,0.5] (influences walk speed when approaching the final target)
set to None to consider target_2d the final target
'''
r = self.world.robot
# ------------------------ 0. Override reset (since some behaviors use this as a sub-behavior)
if reset and self.world.time_local_ms - self.last_executed == 20:
reset = False
self.last_executed = self.world.time_local_ms
# ------------------------ 1. Define walk parameters
self.env.walk_rel_target = (0, 0)
self.env.walk_distance = 0 # MAX_LINEAR_DIST = 0.5
self.env.walk_rel_orientation = 0
# ------------------------ 2. Execute behavior
obs = self.env.observe(reset)
action = run_mlp(obs, self.model)
if self.env.execute(action):
return True
return False
def is_ready(self):
''' Returns True if this behavior is ready to start/continue under current game/robot conditions '''
return True