Compare commits

...

2 Commits

Author SHA1 Message Date
jxr
30df6ef4a0 dribble 2025-04-09 21:13:39 +08:00
MagDish
0a1f594d19 test1 2024-09-08 16:00:49 +08:00
28 changed files with 1197 additions and 8 deletions

2
.idea/FCPCodebase.iml generated
View File

@ -2,7 +2,7 @@
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="FCP" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="FCPCodebase" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">

2
.idea/misc.xml generated
View File

@ -3,5 +3,5 @@
<component name="Black">
<option name="sdkName" value="fcp_env" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="FCP" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" project-jdk-name="FCPCodebase" project-jdk-type="Python SDK" />
</project>

View File

@ -32,6 +32,8 @@ class Agent(Base_Agent):
distance_to_final_target = np.linalg.norm(target_2d - self.loc_head_position[:2])
return self.behavior.execute("Dribble", next_rel_ori,
False) # Args: target, is_target_abs, ori, is_ori_abs, distance
def push(self, target_2d=(15, 0), avoid_obstacles=True):
self.behavior.execute("Push_RL")
def beam(self, avoid_center_circle=False):
r = self.world.robot

View File

@ -49,7 +49,9 @@ class Behavior():
from behaviors.custom.Get_Up.Get_Up import Get_Up
from behaviors.custom.Step.Step import Step
from behaviors.custom.Walk.Walk import Walk
classes = [Basic_Kick,Dribble,Fall,Get_Up,Step,Walk]
from behaviors.custom.Push_RL.Push_RL import Push_RL
classes = [Basic_Kick,Dribble,Fall,Get_Up,Step,Walk,Push_RL]
'''---- End of manual declarations ----'''

View File

@ -7,7 +7,6 @@ import pickle
class Dribble():
def __init__(self, base_agent : Base_Agent) -> None:
self.behavior = base_agent.behavior
self.path_manager = base_agent.path_manager

View File

@ -178,4 +178,4 @@ class Env():
self.execute_ik(l_ankle_pos, l_foot_rot, r_ankle_pos, r_foot_rot) # legs
r.set_joints_target_position_direct( slice(14,22), arms, harmonize=False ) # arms
self.step_counter += 1
self.step_counter += 1

View File

@ -0,0 +1,79 @@
import math
from typing import List
import numpy as np
from math_ops.Math_Ops import Math_Ops as U
from behaviors.custom.Step.Step_Generator import Step_Generator
from world.commons import Other_Robot
from world.World import World
from agent.Base_Agent import Base_Agent
class Env_HL:
COLS = 16
LINS = 5
def __init__(self, base_agent: Base_Agent):
self.world = base_agent.world
self.obs = np.zeros(163, np.float32)
self.output = 0
def fill_radar(self, radar, team=None, radar_part=None, RADIAL_START=None, RADIAL_MULT=None):
if RADIAL_MULT is None:
RADIAL_MULT = {'team': List[Other_Robot]}
w = self.world
bp = w.ball_abs_pos[:2]
C = self.COLS
L = self.LINS
vec_b_goal = (15.5, 0) - bp
vec_b_goal_absdir = U.vector_angle(vec_b_goal)
dist_closest_player = 10
for t in team:
if w.time_local_ms - t.state_last_update > 500:
continue
vec_b_opp = t.state_abs_pos[:2] - bp
dist_b_opp = np.linalg.norm(vec_b_opp)
if dist_b_opp < dist_closest_player:
dist_closest_player = dist_b_opp
vec_b_opp_dir = U.normalize_deg(U.vector_angle(vec_b_opp) - vec_b_goal_absdir)
(div, mod) = divmod(vec_b_opp_dir + 180, 360 / C)
zone = int(div) % C
prog = mod * C / 360
ang_column_weight_1 = (zone, 1 - prog)
ang_column_weight_2 = ((zone + 1) % C, prog)
zone = max(1, 1 + math.log((dist_b_opp + 1e-06) / RADIAL_START, RADIAL_MULT))
prog = zone % 1
zone = math.ceil(zone) - 1
if zone >= L:
continue
rad_line_weight_1 = None if zone == 0 else (zone - 1, 1 - prog)
rad_line_weight_2 = (zone, 1 if zone == 0 else prog)
if rad_line_weight_1 is not None:
radar[(radar_part, rad_line_weight_1[0], ang_column_weight_1[0])] += rad_line_weight_1[1] * \
ang_column_weight_1[1]
radar[(radar_part, rad_line_weight_1[0], ang_column_weight_2[0])] += rad_line_weight_1[1] * \
ang_column_weight_2[1]
radar[(radar_part, rad_line_weight_2[0], ang_column_weight_1[0])] += rad_line_weight_2[1] * \
ang_column_weight_1[1]
radar[(radar_part, rad_line_weight_2[0], ang_column_weight_2[0])] += rad_line_weight_2[1] * \
ang_column_weight_2[1]
return dist_closest_player
def observe(self, init=False):
if init:
self.output = 0
radar = np.zeros((2, self.LINS, self.COLS))
RADIAL_START = 0.3
RADIAL_MULT = 1.7
dist_closest_tm = self.fill_radar(radar, self.world.teammates, 0, RADIAL_START, RADIAL_MULT)
dist_closest_opp = self.fill_radar(radar, self.world.opponents, 1, RADIAL_START, RADIAL_MULT)
self.obs = np.append(radar.flatten(), (dist_closest_tm * 0.5, dist_closest_opp * 0.5, self.output / 40))
return self.obs
def execute(self, action):
vec_b_goal = (15.5, 0) - self.world.ball_abs_pos[:2]
vec_b_goal_absdir = U.vector_angle(vec_b_goal)
rel_direction = action[0] * 60
self.output += np.clip(U.normalize_deg(rel_direction - self.output), -45, 45)
abs_direction = U.normalize_deg(vec_b_goal_absdir + self.output)
return abs_direction

View File

@ -0,0 +1,140 @@
import math
import numpy as np
from math_ops.Math_Ops import Math_Ops as U
from behaviors.custom.Step.Step_Generator import Step_Generator
from agent.Base_Agent import Base_Agent
class Env_LL:
def __init__(self, base_agent: Base_Agent, step_width=None):
self.world = base_agent.world
self.obs = np.zeros(78, np.float32)
self.STEP_DUR = 8
self.STEP_Z_SPAN = 0.02
self.STEP_Z_MAX = 0.7
r = self.world.robot
nao_specs = base_agent.inv_kinematics.NAO_SPECS
self.leg_length = nao_specs[1] + nao_specs[3]
feet_y_dev = nao_specs[0] * step_width
sample_time = r.STEPTIME
max_ankle_z = nao_specs[5]
self.step_generator = Step_Generator(feet_y_dev, sample_time, max_ankle_z)
self.inv_kinematics = base_agent.inv_kinematics
self.DEFAULT_ARMS = np.array([
-90, -90, 8, 8, 90, 90, 70, 70], np.float32)
self.HL_abs_direction = None
self.push_speed = 1
self.step_counter = 0
self.act = np.zeros(16, np.float32)
self.values_l = None
self.values_r = None
def observe(self, init=False):
w = self.world
r = self.world.robot
if init:
self.step_counter = 0
self.act = np.zeros(16, np.float32)
# 填充观测向量
self.obs[0] = min(self.step_counter, 96) / 100
self.obs[1] = r.loc_head_z * 3
self.obs[2] = r.loc_head_z_vel / 2
self.obs[3] = r.imu_torso_roll / 15
self.obs[4] = r.imu_torso_pitch / 15
self.obs[5:8] = r.gyro / 100
self.obs[8:11] = r.acc / 10
self.obs[11:17] = r.frp.get('lf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01, 0.01)
self.obs[17:23] = r.frp.get('rf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01, 0.01)
self.obs[23:43] = r.joints_position[2:22] / 100
self.obs[43:63] = r.joints_speed[2:22] / 6.1395
if init:
self.obs[63] = 1
self.obs[64] = 1
self.obs[65] = 0
self.obs[66] = 0
else:
self.obs[63] = self.step_generator.external_progress
self.obs[64] = float(self.step_generator.state_is_left_active)
self.obs[65] = float(not self.step_generator.state_is_left_active)
self.obs[66] = math.sin((self.step_generator.state_current_ts / self.step_generator.ts_per_step) * math.pi)
ball_rel_hip_center = self.inv_kinematics.torso_to_hip_transform(w.ball_rel_torso_cart_pos)
ball_dist_hip_center = np.linalg.norm(ball_rel_hip_center)
if init:
self.obs[67:70] = (0, 0, 0)
elif w.ball_is_visible:
self.obs[67:70] = (ball_rel_hip_center - self.obs[70:73]) * 10
self.obs[70:73] = ball_rel_hip_center
self.obs[73] = ball_dist_hip_center * 2
rel_HL_target = U.normalize_deg(self.HL_abs_direction - r.imu_torso_orientation)
self.obs[74] = U.deg_cos(rel_HL_target)
self.obs[75] = U.deg_sin(rel_HL_target)
self.obs[76] = 2
self.obs[77] = 2
# 找到最近的对手
opps_dist = [o.state_horizontal_dist for o in w.opponents]
if opps_dist:
closest_opp_idx = np.argmin(opps_dist)
o = w.opponents[closest_opp_idx]
if opps_dist[closest_opp_idx] < 1:
body_parts_rel_torso_2d_avg = np.zeros(2)
weight_sum = 0
for pos in o.body_parts_cart_rel_pos.values():
bp_rel_torso_2d = r.head_to_body_part_transform('torso', pos)[:2]
weight = math.pow(1e+06, -np.linalg.norm(bp_rel_torso_2d))
body_parts_rel_torso_2d_avg += weight * bp_rel_torso_2d
weight_sum += weight
if weight_sum > 0:
body_parts_rel_torso_2d_avg /= weight_sum
self.obs[76] = body_parts_rel_torso_2d_avg[0]
self.obs[77] = body_parts_rel_torso_2d_avg[1]
return self.obs
def execute_ik(self, l_pos, l_rot, r_pos, r_rot):
r = self.world.robot
(indices, self.values_l, error_codes) = self.inv_kinematics.leg(
l_pos, l_rot, True, dynamic_pose=False)
r.set_joints_target_position_direct(indices, self.values_l, harmonize=False)
(indices, self.values_r, error_codes) = self.inv_kinematics.leg(
r_pos, r_rot, False, dynamic_pose=False)
r.set_joints_target_position_direct(indices, self.values_r, harmonize=False)
def execute(self, action):
r = self.world.robot
self.act = 0.8 * self.act + 0.2 * action * 0.9 * self.push_speed
(lfy, lfz, rfy, rfz) = self.step_generator.get_target_positions(
self.step_counter == 0, self.STEP_DUR, self.STEP_Z_SPAN,
self.leg_length * self.STEP_Z_MAX)
a = self.act
l_ankle_pos = (a[0] * 0.025 - 0.01, a[1] * 0.01 + lfy, a[2] * 0.01 + lfz)
r_ankle_pos = (a[3] * 0.025 - 0.01, a[4] * 0.01 + rfy, a[5] * 0.01 + rfz)
l_foot_rot = a[6:9] * (2, 2, 3)
r_foot_rot = a[9:12] * (2, 2, 3)
l_foot_rot[2] = max(0, l_foot_rot[2] + 18.3)
r_foot_rot[2] = min(0, r_foot_rot[2] - 18.3)
arms = np.copy(self.DEFAULT_ARMS)
arms[0:4] += a[12:16] * 4
self.execute_ik(l_ankle_pos, l_foot_rot, r_ankle_pos, r_foot_rot)
r.set_joints_target_position_direct(slice(14, 22), arms, harmonize=False)
self.step_counter += 1

View File

@ -0,0 +1,164 @@
import pickle
from behaviors.custom.Push_RL.Env_LL import Env_LL
from behaviors.custom.Push_RL.Env_HL import Env_HL
from math_ops.Neural_Network import run_mlp
from math_ops.Math_Ops import Math_Ops as U
import numpy as np
from agent.Base_Agent import Base_Agent
class Push_RL:
def __init__(self, base_agent: Base_Agent):
self.world = base_agent.world
self.description = 'RL push'
self.auto_head = True
self.env_LL = Env_LL(base_agent, 0.9 if self.world.robot.type == 3 else 1.2)
self.env_HL = Env_HL(base_agent)
self.phase = 0
self.counter = 0
self.behavior = base_agent.behavior
self.path_manager = base_agent.path_manager
self.inv_kinematics = base_agent.inv_kinematics
# 模型加载(这部分可能在反编译中丢失)
with open(U.get_active_directory([
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl"
][self.world.robot.type]), 'rb') as f:
self.model_LL = pickle.load(f)
with open(U.get_active_directory([
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl"
][self.world.robot.type]), 'rb') as f:
self.model_HL = pickle.load(f)
def execute(self, reset, stop=False):
''' Just push the ball autonomously, no target is required '''
w = self.world
r = self.world.robot
bp = w.ball_abs_pos[:2]
me = r.loc_head_position[:2]
step_gen = self.behavior.get_custom_behavior_object('Walk').env.step_generator
reset_push = False
if reset:
self.phase = 0
b_rel = w.ball_rel_torso_cart_pos
if self.behavior.previous_behavior == 'Dribble':
if b_rel[0] < 0.25:
pass
else:
self.phase = 0
elif abs(b_rel[1]) < 0.07:
self.phase = 1
reset_push = True
if self.phase == 0:
goal_target = (15.1, np.clip(bp[1], -0.7, 0.7))
goal_ori = U.vector_angle(goal_target - bp)
vec_me_ball_ori = U.vector_angle(bp - me)
rel_curr_angle = U.normalize_deg(vec_me_ball_ori - goal_ori)
abs_targ_angle = goal_ori + np.clip(rel_curr_angle, -60, 60)
if bp[1] > 9:
abs_targ_angle = np.clip(abs_targ_angle, -160, -20)
elif bp[1] < -9:
abs_targ_angle = np.clip(abs_targ_angle, 20, 160)
if bp[0] > 14:
if bp[1] > 1.1:
abs_targ_angle = np.clip(abs_targ_angle, -140, -100)
elif bp[1] < -1.1:
abs_targ_angle = np.clip(abs_targ_angle, 100, 140)
else:
abs_targ_angle = goal_ori
ball_dist = np.linalg.norm(bp - me)
ori = None if ball_dist > 0.8 else abs_targ_angle
(next_pos, next_ori, dist_to_final_target) = self.path_manager.get_path_to_ball(
x_ori=abs_targ_angle, x_dev=-0.19, torso_ori=ori)
b_rel = w.ball_rel_torso_cart_pos
ang_diff = abs(U.normalize_deg(abs_targ_angle - r.imu_torso_orientation))
# 检查是否可以进入阶段1
if b_rel[0] >= 0.25 and abs(b_rel[1]) < 0.05 and step_gen.state_is_left_active and step_gen.switch and \
w.time_local_ms - w.ball_abs_pos_last_update < 300 and ang_diff < 10:
reset_push = True
self.phase += 1
self.counter = 0
else:
dist = max(0.13, dist_to_final_target)
reset_walk = reset or self.behavior.previous_behavior != 'Walk'
self.behavior.execute_sub_behavior('Walk', reset_walk, next_pos, True,
next_ori if dist_to_final_target < 1 else None, True, dist)
if stop:
self.phase = 0 # Reset phase on forced stop
return True
if self.phase == 1:
# 检查是否要离开场地
leaving_field = False
if (bp[1] > 9 and r.imu_torso_orientation > 0) or \
(bp[1] < -9 and r.imu_torso_orientation < 0) or \
(bp[0] > 14 and abs(bp[1]) > 1.1):
leaving_field = abs(r.imu_torso_orientation) < 90
ball_hip = self.inv_kinematics.torso_to_hip_transform(w.ball_rel_torso_cart_pos)[:2]
dist_ball_our_goal = np.linalg.norm(bp - (-15, 0))
dist_us_our_goal = np.linalg.norm(me - (-15, 0))
# 检查是否丢球
lost = abs(ball_hip[1]) > 0.2
ball_unseen = w.time_local_ms - w.ball_last_seen >= 400
ball_far = np.linalg.norm(ball_hip) > 0.3
terminal = leaving_field or (dist_ball_our_goal + 0.2 < dist_us_our_goal) or \
(not ball_unseen and ball_far and lost)
if stop or terminal:
self.phase += 1
elif self.counter % 25 == 0:
obs = self.env_HL.observe(reset_push)
action = run_mlp(obs, self.model_HL)
self.env_LL.HL_abs_direction = self.env_HL.execute(action)
self.counter += 1
self.env_LL.push_speed = 1
obs = self.env_LL.observe(reset_push)
action = run_mlp(obs, self.model_LL)
self.env_LL.execute(action)
# 绘制调试信息
d = w.draw
if d.enabled:
vec = U.vector_from_angle(self.env_LL.HL_abs_direction)
d.line(me, me + vec, 4, d.Color.red, 'opp_vec')
return False
if self.phase > 1:
WIND_DOWN_STEPS = 50
self.env_LL.push_speed = 1 - self.phase / WIND_DOWN_STEPS
self.env_LL.HL_abs_direction = r.imu_torso_orientation
obs = self.env_LL.observe(reset_push)
action = run_mlp(obs, self.model_LL)
self.env_LL.execute(action)
self.phase += 1
if self.phase >= WIND_DOWN_STEPS - 5 or np.linalg.norm(r.get_head_abs_vel(4)) < 0.15:
self.phase = 0
return True
return False
def is_ready(self):
''' Returns True if Push Behavior is ready to start under current game/robot conditions '''
return True

View File

@ -0,0 +1,2 @@
{Fri 19:02:40 Step:2513} World_Parser.py: Received field line with NaNs [ 2.98 43.85 21.32 nan nan nan]
{Fri 19:03:14 Step:4213} World_Parser.py: Received field line with NaNs [ 3.38 35.5 20.11 nan nan nan]

396
scripts/gyms/dribble.py Normal file
View File

@ -0,0 +1,396 @@
import math
import random
from agent.Base_Agent import Base_Agent as Agent
from behaviors.custom.Step.Step import Step
from world.commons.Draw import Draw
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import SubprocVecEnv
from scripts.commons.Server import Server
from scripts.commons.Train_Base import Train_Base
from time import sleep
import os, gym
import numpy as np
from math_ops.Math_Ops import Math_Ops as U
from math_ops.Math_Ops import Math_Ops as M
from behaviors.custom.Step.Step_Generator import Step_Generator
'''
Objective:
Learn how to run forward using step primitive
----------
- class Basic_Run: implements an OpenAI custom gym
- class Train: implements algorithms to train a new model or test an existing model
'''
class dribble(gym.Env):
def __init__(self, ip, server_p, monitor_p, r_type, enable_draw) -> None:
self.abs_ori = 75
self.ball_dist_hip_center_2d = 0
self.ball_dist_hip_center = None
self.internal_rel_orientation = None
self.dribble_speed = 1
self.gym_last_internal_abs_ori = None
self.internal_target_vel = None
self.Gen_player_pos = None
self.internal_target = None
self.values_l = None
self.values_r = None
self.reset_time = None
self.behavior = None
self.robot_type = r_type
self.kick_ori = 0
self.terminal = False
# Args: Server IP, Agent Port, Monitor Port, Uniform No., Robot Type, Team Name, Enable Log, Enable Draw
self.player = Agent(ip, server_p, monitor_p, 1, self.robot_type, "Gym", True, True)
self.step_counter = 0 # to limit episode size
self.ik = self.player.inv_kinematics
self.dribble_rel_orientation = 0 # relative to imu_torso_orientation (in degrees)
# Step behavior defaults
self.STEP_DUR = 8
self.STEP_Z_SPAN = 0.02
self.STEP_Z_MAX = 0.70
nao_specs = self.ik.NAO_SPECS
self.leg_length = nao_specs[1] + nao_specs[3] # upper leg height + lower leg height
feet_y_dev = nao_specs[0] * 1.12 # wider step
sample_time = self.player.world.robot.STEPTIME
max_ankle_z = nao_specs[5]
self.step_generator = Step_Generator(feet_y_dev, sample_time, max_ankle_z)
self.DEFAULT_ARMS = np.array([-90, -90, 8, 8, 90, 90, 70, 70], np.float32)
self.act = np.zeros(16, np.float32) # memory variable
self.path_manager = self.player.path_manager
# State space
obs_size = 76
self.obs = np.zeros(obs_size, np.float32)
self.observation_space = gym.spaces.Box(low=np.full(obs_size, -np.inf, np.float32),
high=np.full(obs_size, np.inf, np.float32), dtype=np.float32)
self.ball_x_center = 0.21
self.ball_y_center = -0.045
# Action space
MAX = np.finfo(np.float32).max
self.no_of_actions = act_size = 16
self.action_space = gym.spaces.Box(low=np.full(act_size, -MAX, np.float32),
high=np.full(act_size, MAX, np.float32), dtype=np.float32)
# Place ball far away to keep landmarks in FoV (head follows ball while using Step behavior)
self.player.scom.unofficial_move_ball((14, 0, 0.042))
self.player.scom.unofficial_set_play_mode("PlayOn")
self.player.scom.unofficial_move_ball((0, 0, 0))
def observe(self, init=False, virtual_ball=False):
r = self.player.world.robot
w = self.player.world
if init: # reset variables
self.step_counter = 0
self.act = np.zeros(16, np.float32) # memory variable
# index observation naive normalization
self.obs[0] = min(self.step_counter, 12 * 8) / 100 # simple counter: 0,1,2,3...
self.obs[1] = r.loc_head_z * 3 # z coordinate (torso)
self.obs[2] = r.loc_head_z_vel / 2 # z velocity (torso)
self.obs[3] = r.imu_torso_roll / 15 # absolute torso roll in deg
self.obs[4] = r.imu_torso_pitch / 15 # absolute torso pitch in deg
self.obs[5:8] = r.gyro / 100 # gyroscope
self.obs[8:11] = r.acc / 10 # accelerometer
self.obs[11:17] = r.frp.get('lf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01,
0.01) # left foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
self.obs[17:23] = r.frp.get('rf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01,
0.01) # right foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
# *if foot is not touching the ground, then (px=0,py=0,pz=0,fx=0,fy=0,fz=0)
self.obs[23:43] = r.joints_position[2:22] / 100 # position of all joints except head & toes (for robot type 4)
self.obs[43:63] = r.joints_speed[2:22] / 6.1395 # speed of all joints except head & toes (for robot type 4)
'''
Expected observations for walking state:
Time step R 0 1 2 3 4 5 6 7 0
Progress 1 0 .14 .28 .43 .57 .71 .86 1 0
Left leg active T F F F F F F F F T
'''
if init: # the walking parameters refer to the last parameters in effect (after a reset, they are pointless)
self.obs[63] = 1 # step progress
self.obs[64] = 1 # 1 if left leg is active
self.obs[65] = 0 # 1 if right leg is active
self.obs[66] = 0
else:
self.obs[63] = self.step_generator.external_progress # step progress
self.obs[64] = float(self.step_generator.state_is_left_active) # 1 if left leg is active
self.obs[65] = float(not self.step_generator.state_is_left_active) # 1 if right leg is active
self.obs[66] = math.sin(self.step_generator.state_current_ts / self.step_generator.ts_per_step * math.pi)
#ball
ball_rel_hip_center = self.ik.torso_to_hip_transform(w.ball_rel_torso_cart_pos)
ball_dist_hip_center = np.linalg.norm(ball_rel_hip_center)
if init:
self.obs[67:70] = (0, 0, 0) # Initial velocity is 0
elif w.ball_is_visible:
self.obs[67:70] = (ball_rel_hip_center - self.obs[
70:73]) * 10 # Ball velocity, relative to ankle's midpoint
self.obs[70:73] = ball_rel_hip_center # Ball position, relative to hip
self.obs[73] = self.ball_dist_hip_center * 2
if virtual_ball: # simulate the ball between the robot's feet
self.obs[67:74] = (0, 0, 0, 0.05, 0, -0.175, 0.36)
'''
Create internal target with a smoother variation
'''
MAX_ROTATION_DIFF = 20 # max difference (degrees) per visual step
MAX_ROTATION_DIST = 80
if init:
self.internal_rel_orientation = 0
self.internal_target_vel = 0
self.gym_last_internal_abs_ori = r.imu_torso_orientation # for training purposes (reward)
# ---------------------------------------------------------------- compute internal target
if w.vision_is_up_to_date:
previous_internal_rel_orientation = np.copy(self.internal_rel_orientation)
internal_ori_diff = np.clip(M.normalize_deg(self.dribble_rel_orientation - self.internal_rel_orientation),
-MAX_ROTATION_DIFF, MAX_ROTATION_DIFF)
self.internal_rel_orientation = np.clip(M.normalize_deg(self.internal_rel_orientation + internal_ori_diff),
-MAX_ROTATION_DIST, MAX_ROTATION_DIST)
# Observations
self.internal_target_vel = self.internal_rel_orientation - previous_internal_rel_orientation
self.gym_last_internal_abs_ori = self.internal_rel_orientation + r.imu_torso_orientation
# ----------------------------------------------------------------- observations
self.obs[74] = self.internal_rel_orientation / MAX_ROTATION_DIST
self.obs[75] = self.internal_target_vel / MAX_ROTATION_DIFF
return self.obs
def execute_ik(self, l_pos, l_rot, r_pos, r_rot):
r = self.player.world.robot
# Apply IK to each leg + Set joint targets
# Left leg
indices, self.values_l, error_codes = self.ik.leg(l_pos, l_rot, True, dynamic_pose=False)
r.set_joints_target_position_direct(indices, self.values_l, harmonize=False)
# Right leg
indices, self.values_r, error_codes = self.ik.leg(r_pos, r_rot, False, dynamic_pose=False)
r.set_joints_target_position_direct(indices, self.values_r, harmonize=False)
def sync(self):
''' Run a single simulation step '''
r = self.player.world.robot
self.player.scom.commit_and_send(r.get_command())
self.player.scom.receive()
def reset(self):
# print("reset")
'''
Reset and stabilize the robot
Note: for some behaviors it would be better to reduce stabilization or add noise
'''
self.abs_ori = 45
self.player.scom.unofficial_set_play_mode("PlayOn")
Gen_ball_pos = [- 9, 0, 0]
self.Gen_player_pos = (Gen_ball_pos[0] - 1.5, Gen_ball_pos[1], 0.5)
self.player.scom.unofficial_move_ball((Gen_ball_pos[0], Gen_ball_pos[1], Gen_ball_pos[2]))
self.step_counter = 0
self.behavior = self.player.behavior
r = self.player.world.robot
w = self.player.world
t = w.time_local_ms
self.reset_time = t
self.b_rel = w.ball_rel_torso_cart_pos[:2]
self.path_manager = self.player.path_manager
for _ in range(25):
self.player.scom.unofficial_beam(self.Gen_player_pos, 0) # beam player continuously (floating above ground)
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# beam player to ground
self.player.scom.unofficial_beam(self.Gen_player_pos, 0)
r.joints_target_speed[
0] = 0.01 # move head to trigger physics update (rcssserver3d bug when no joint is moving)
self.sync()
# stabilize on ground
for _ in range(7):
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# walk to ball
while True:
self.b_rel = w.ball_rel_torso_cart_pos[:2]
if self.player.behavior.is_ready("Get_Up"):
self.player.behavior.execute_to_completion("Get_Up")
if 0.26 > self.b_rel[0] > 0.18 and abs(self.b_rel[1]) < 0.04 and w.ball_is_visible:
break
else:
if self.player.behavior.is_ready("Get_Up"):
self.player.behavior.execute_to_completion("Get_Up")
reset_walk = self.behavior.previous_behavior != "Walk" # reset walk if it wasn't the previous behavior
rel_target = self.b_rel + (-0.23, 0) # relative target is a circle (center: ball, radius:0.23m)
rel_ori = M.vector_angle(self.b_rel) # relative orientation of ball, NOT the target!
dist = max(0.08, np.linalg.norm(rel_target) * 0.7) # slow approach
self.behavior.execute_sub_behavior("Walk", reset_walk, rel_target, False, rel_ori, False,
dist) # target, is_target_abs, ori, is_ori_abs, distance
self.sync()
self.act = np.zeros(self.no_of_actions, np.float32)
return self.observe(True)
def render(self, mode='human', close=False):
return
def close(self):
Draw.clear_all()
self.player.terminate()
def step(self, action):
r = (self.
player.world.robot)
w = self.player.world
d = w.draw
if w.ball_abs_pos[1] > 0: #
dribble_target = (15, 5)
else:
dribble_target = (15, -5)
self.dribble_rel_orientation = self.path_manager.get_dribble_path(optional_2d_target=dribble_target)[1]
# exponential moving average
self.act = 0.85 * self.act + 0.15 * action * 0.7 * 0.95 * self.dribble_speed
# execute Step behavior to extract the target positions of each leg (we will override these targets)
lfy, lfz, rfy, rfz = self.step_generator.get_target_positions(self.step_counter == 0, self.STEP_DUR,
self.STEP_Z_SPAN,
self.leg_length * self.STEP_Z_MAX)
# Leg IK
a = self.act
l_ankle_pos = (a[0] * 0.025 - 0.01, a[1] * 0.01 + lfy, a[2] * 0.01 + lfz)
r_ankle_pos = (a[3] * 0.025 - 0.01, a[4] * 0.01 + rfy, a[5] * 0.01 + rfz)
l_foot_rot = a[6:9] * (2, 2, 3)
r_foot_rot = a[9:12] * (2, 2, 3)
# Limit leg yaw/pitch (and add bias)
l_foot_rot[2] = max(0, l_foot_rot[2] + 18.3)
r_foot_rot[2] = min(0, r_foot_rot[2] - 18.3)
# Arms actions
arms = np.copy(self.DEFAULT_ARMS) # default arms pose
arms[0:4] += a[12:16] * 4 # arms pitch+roll
# Set target positions
self.execute_ik(l_ankle_pos, l_foot_rot, r_ankle_pos, r_foot_rot) # legs
r.set_joints_target_position_direct(slice(14, 22), arms, harmonize=False) # arms
self.sync()
self.step_counter += 1
# 收集观测
obs = self.observe()
angle_rad = np.radians(self.gym_last_internal_abs_ori) # 将角度转换为弧度
unit_vector = np.array([np.cos(angle_rad), np.sin(angle_rad)]) # 计算单位向量
if np.linalg.norm(w.ball_cheat_abs_vel[:2]) != 0:
cos_theta = np.dot(unit_vector, w.ball_cheat_abs_vel[:2]) / (
np.linalg.norm(unit_vector) * np.linalg.norm(w.ball_cheat_abs_vel[:2]))
else:
cos_theta = 0
# 计算奖励
reward = np.linalg.norm(w.ball_cheat_abs_vel) * cos_theta
if self.ball_dist_hip_center_2d < 0.115:
reward = 0
# 判断终止
if self.player.behavior.is_ready("Get_Up"):
self.terminal = True
elif w.time_local_ms - self.reset_time > 7500 * 3 or np.linalg.norm(
w.ball_cheat_abs_pos[:2] - r.loc_head_position[:2]) > 0.45 or not w.is_ball_abs_pos_from_vision:
self.terminal = True
else:
self.terminal = False
return obs, reward, self.terminal, {}
class Train(Train_Base):
def __init__(self, script) -> None:
super().__init__(script)
def train(self, args):
# --------------------------------------- Learning parameters
n_envs = min(1, os.cpu_count())
n_steps_per_env = 1024 # RolloutBuffer is of size (n_steps_per_env * n_envs)
minibatch_size = 64 # should be a factor of (n_steps_per_env * n_envs)
total_steps = 50000000
learning_rate = 3e-4
folder_name = f'Sprint_R{self.robot_type}'
model_path = f'./scripts/gyms/logs/{folder_name}/'
# print("Model path:", model_path)
# --------------------------------------- Run algorithm
def init_env(i_env):
def thunk():
return dribble(self.ip, self.server_p + i_env, self.monitor_p_1000 + i_env, self.robot_type, False)
return thunk
servers = Server(self.server_p, self.monitor_p_1000, n_envs + 1) # include 1 extra server for testing
env = SubprocVecEnv([init_env(i) for i in range(n_envs)])
eval_env = SubprocVecEnv([init_env(n_envs)])
try:
if "model_file" in args: # retrain
model = PPO.load(args["model_file"], env=env, device="cuda", n_envs=n_envs, n_steps=n_steps_per_env,
batch_size=minibatch_size, learning_rate=learning_rate)
else: # train new model
model = PPO("MlpPolicy", env=env, verbose=1, n_steps=n_steps_per_env, batch_size=minibatch_size,
learning_rate=learning_rate, device="cuda")
model_path = self.learn_model(model, total_steps, model_path, eval_env=eval_env,
eval_freq=n_steps_per_env * 20, save_freq=n_steps_per_env * 20,
backup_env_file=__file__)
except KeyboardInterrupt:
sleep(1) # wait for child processes
("\nctrl+c pressed, aborting...\n")
servers.kill()
return
env.close()
eval_env.close()
servers.kill()
def test(self, args):
# Uses different server and monitor ports
server = Server(self.server_p - 1, self.monitor_p, 1)
env = dribble(self.ip, self.server_p - 1, self.monitor_p, self.robot_type, True)
model = PPO.load(args["model_file"], env=env)
try:
self.export_model(args["model_file"], args["model_file"] + ".pkl",
False) # Export to pkl to create custom behavior
self.test_model(model, env, log_path=args["folder_dir"], model_path=args["folder_dir"])
except KeyboardInterrupt:
print()
env.close()
server.kill()

Binary file not shown.

Binary file not shown.

Binary file not shown.

403
scripts/utils/gail/gail.py Normal file
View File

@ -0,0 +1,403 @@
import math
import random
import pickle
from agent.Base_Agent import Base_Agent as Agent
from behaviors.custom.Step.Step import Step
from world.commons.Draw import Draw
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import SubprocVecEnv
from scripts.commons.Server import Server
from scripts.commons.Train_Base import Train_Base
from time import sleep
import os, gym
import numpy as np
from math_ops.Math_Ops import Math_Ops as U
from math_ops.Math_Ops import Math_Ops as M
from behaviors.custom.Step.Step_Generator import Step_Generator
from sb3_contrib import GAIL
'''
Objective:
Learn how to run forward using step primitive
----------
- class Basic_Run: implements an OpenAI custom gym
- class Train: implements algorithms to train a new model or test an existing model
'''
class dribble(gym.Env):
def __init__(self, ip, server_p, monitor_p, r_type, enable_draw) -> None:
self.expert_data = dict()
self.abs_ori = 75
self.ball_dist_hip_center_2d = 0
self.ball_dist_hip_center = None
self.internal_rel_orientation = None
self.dribble_speed = 1
self.gym_last_internal_abs_ori = None
self.internal_target_vel = None
self.Gen_player_pos = None
self.internal_target = None
self.values_l = None
self.values_r = None
self.reset_time = None
self.behavior = None
self.robot_type = r_type
self.kick_ori = 0
self.terminal = False
# Args: Server IP, Agent Port, Monitor Port, Uniform No., Robot Type, Team Name, Enable Log, Enable Draw
self.player = Agent(ip, server_p, monitor_p, 1, self.robot_type, "Gym", True, True)
self.step_counter = 0 # to limit episode size
self.ik = self.player.inv_kinematics
self.dribble_rel_orientation = 0 # relative to imu_torso_orientation (in degrees)
# Step behavior defaults
self.STEP_DUR = 8
self.STEP_Z_SPAN = 0.02
self.STEP_Z_MAX = 0.70
nao_specs = self.ik.NAO_SPECS
self.leg_length = nao_specs[1] + nao_specs[3] # upper leg height + lower leg height
feet_y_dev = nao_specs[0] * 1.12 # wider step
sample_time = self.player.world.robot.STEPTIME
max_ankle_z = nao_specs[5]
self.step_generator = Step_Generator(feet_y_dev, sample_time, max_ankle_z)
self.DEFAULT_ARMS = np.array([-90, -90, 8, 8, 90, 90, 70, 70], np.float32)
self.act = np.zeros(16, np.float32) # memory variable
self.path_manager = self.player.path_manager
# State space
obs_size = 76
self.obs = np.zeros(obs_size, np.float32)
self.observation_space = gym.spaces.Box(low=np.full(obs_size, -np.inf, np.float32),
high=np.full(obs_size, np.inf, np.float32), dtype=np.float32)
self.ball_x_center = 0.21
self.ball_y_center = -0.045
# Action space
MAX = np.finfo(np.float32).max
self.no_of_actions = act_size = 16
self.action_space = gym.spaces.Box(low=np.full(act_size, -MAX, np.float32),
high=np.full(act_size, MAX, np.float32), dtype=np.float32)
# Place ball far away to keep landmarks in FoV (head follows ball while using Step behavior)
self.player.scom.unofficial_move_ball((14, 0, 0.042))
self.player.scom.unofficial_set_play_mode("PlayOn")
self.player.scom.unofficial_move_ball((0, 0, 0))
def observe(self, init=False, virtual_ball=False):
r = self.player.world.robot
w = self.player.world
if init: # reset variables
self.step_counter = 0
self.act = np.zeros(16, np.float32) # memory variable
# index observation naive normalization
self.obs[0] = min(self.step_counter, 12 * 8) / 100 # simple counter: 0,1,2,3...
self.obs[1] = r.loc_head_z * 3 # z coordinate (torso)
self.obs[2] = r.loc_head_z_vel / 2 # z velocity (torso)
self.obs[3] = r.imu_torso_roll / 15 # absolute torso roll in deg
self.obs[4] = r.imu_torso_pitch / 15 # absolute torso pitch in deg
self.obs[5:8] = r.gyro / 100 # gyroscope
self.obs[8:11] = r.acc / 10 # accelerometer
self.obs[11:17] = r.frp.get('lf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01,
0.01) # left foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
self.obs[17:23] = r.frp.get('rf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01,
0.01) # right foot: relative point of origin (p) and force vector (f) -> (px,py,pz,fx,fy,fz)*
# *if foot is not touching the ground, then (px=0,py=0,pz=0,fx=0,fy=0,fz=0)
self.obs[23:43] = r.joints_position[2:22] / 100 # position of all joints except head & toes (for robot type 4)
self.obs[43:63] = r.joints_speed[2:22] / 6.1395 # speed of all joints except head & toes (for robot type 4)
if init: # the walking parameters refer to the last parameters in effect (after a reset, they are pointless)
self.obs[63] = 1 # step progress
self.obs[64] = 1 # 1 if left leg is active
self.obs[65] = 0 # 1 if right leg is active
self.obs[66] = 0
else:
self.obs[63] = self.step_generator.external_progress # step progress
self.obs[64] = float(self.step_generator.state_is_left_active) # 1 if left leg is active
self.obs[65] = float(not self.step_generator.state_is_left_active) # 1 if right leg is active
self.obs[66] = math.sin(self.step_generator.state_current_ts / self.step_generator.ts_per_step * math.pi)
# Ball
ball_rel_hip_center = self.ik.torso_to_hip_transform(w.ball_rel_torso_cart_pos)
self.ball_dist_hip_center = np.linalg.norm(ball_rel_hip_center)
ball_rel_torso_xy = w.ball_rel_torso_cart_pos[:2] # 取X和Y分量
self.ball_dist_hip_center_2d = np.linalg.norm(ball_rel_torso_xy)
if init:
self.obs[67:70] = (0, 0, 0) # Initial velocity is 0
elif w.ball_is_visible:
self.obs[67:70] = (ball_rel_hip_center - self.obs[
70:73]) * 10 # Ball velocity, relative to ankle's midpoint
self.obs[70:73] = ball_rel_hip_center # Ball position, relative to hip
self.obs[73] = self.ball_dist_hip_center * 2
if virtual_ball: # simulate the ball between the robot's feet
self.obs[67:74] = (0, 0, 0, 0.05, 0, -0.175, 0.36)
'''
Create internal target with a smoother variation
'''
MAX_ROTATION_DIFF = 20 # max difference (degrees) per visual step
MAX_ROTATION_DIST = 80
if init:
self.internal_rel_orientation = 0
self.internal_target_vel = 0
self.gym_last_internal_abs_ori = r.imu_torso_orientation # for training purposes (reward)
# ---------------------------------------------------------------- compute internal target
if w.vision_is_up_to_date:
previous_internal_rel_orientation = np.copy(self.internal_rel_orientation)
internal_ori_diff = np.clip(M.normalize_deg(self.dribble_rel_orientation - self.internal_rel_orientation),
-MAX_ROTATION_DIFF, MAX_ROTATION_DIFF)
self.internal_rel_orientation = np.clip(M.normalize_deg(self.internal_rel_orientation + internal_ori_diff),
-MAX_ROTATION_DIST, MAX_ROTATION_DIST)
# Observations
self.internal_target_vel = self.internal_rel_orientation - previous_internal_rel_orientation
self.gym_last_internal_abs_ori = self.internal_rel_orientation + r.imu_torso_orientation
# ----------------------------------------------------------------- observations
self.obs[74] = self.internal_rel_orientation / MAX_ROTATION_DIST
self.obs[75] = self.internal_target_vel / MAX_ROTATION_DIFF
return self.obs
def sync(self):
''' Run a single simulation step '''
r = self.player.world.robot
self.player.scom.commit_and_send(r.get_command())
self.player.scom.receive()
def reset(self):
# print("reset")
'''
Reset and stabilize the robot
Note: for some behaviors it would be better to reduce stabilization or add noise
'''
self.abs_ori = 45
self.player.scom.unofficial_set_play_mode("PlayOn")
Gen_ball_pos = [- 9, 0, 0]
self.Gen_player_pos = (Gen_ball_pos[0] - 1.5, Gen_ball_pos[1], 0.5)
self.player.scom.unofficial_move_ball((Gen_ball_pos[0], Gen_ball_pos[1], Gen_ball_pos[2]))
self.step_counter = 0
self.behavior = self.player.behavior
r = self.player.world.robot
w = self.player.world
t = w.time_local_ms
self.reset_time = t
self.b_rel = w.ball_rel_torso_cart_pos[:2]
self.path_manager = self.player.path_manager
for _ in range(25):
self.player.scom.unofficial_beam(self.Gen_player_pos, 0) # beam player continuously (floating above ground)
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# beam player to ground
self.player.scom.unofficial_beam(self.Gen_player_pos, 0)
r.joints_target_speed[
0] = 0.01 # move head to trigger physics update (rcssserver3d bug when no joint is moving)
self.sync()
# stabilize on ground
for _ in range(7):
self.player.behavior.execute("Zero_Bent_Knees")
self.sync()
# walk to ball
while True:
self.b_rel = w.ball_rel_torso_cart_pos[:2]
if self.player.behavior.is_ready("Get_Up"):
self.player.behavior.execute_to_completion("Get_Up")
if 0.26 > self.b_rel[0] > 0.18 and abs(self.b_rel[1]) < 0.04 and w.ball_is_visible:
break
else:
if self.player.behavior.is_ready("Get_Up"):
self.player.behavior.execute_to_completion("Get_Up")
reset_walk = self.behavior.previous_behavior != "Walk" # reset walk if it wasn't the previous behavior
rel_target = self.b_rel + (-0.23, 0) # relative target is a circle (center: ball, radius:0.23m)
rel_ori = M.vector_angle(self.b_rel) # relative orientation of ball, NOT the target!
dist = max(0.08, np.linalg.norm(rel_target) * 0.7) # slow approach
self.behavior.execute_sub_behavior("Walk", reset_walk, rel_target, False, rel_ori, False,
dist) # target, is_target_abs, ori, is_ori_abs, distance
self.sync()
self.act = np.zeros(self.no_of_actions, np.float32)
return self.observe(True)
def render(self, mode='human', close=False):
return
def close(self):
Draw.clear_all()
self.player.terminate()
def run_mlp(self, obs, weights, activation_function="tanh"):
'''
Run multilayer perceptron using numpy
Parameters
----------
obs : ndarray
float32 array with neural network inputs
weights : list
list of MLP layers of type (bias, kernel)
activation_function : str
activation function for hidden layers
set to "none" to disable
'''
obs = obs.astype(np.float32, copy=False)
out = obs
for w in weights[:-1]: # for each hidden layer
out = np.matmul(w[1], out) + w[0]
if activation_function == "tanh":
np.tanh(out, out=out)
elif activation_function != "none":
raise NotImplementedError
return np.matmul(weights[-1][1], out) + weights[-1][0] # final layer
def step(self, action):
r = (self.
player.world.robot)
w = self.player.world
d = w.draw
if w.ball_abs_pos[1] > 0: #
dribble_target = (15, 5)
else:
dribble_target = (15, -5)
with open(M.get_active_directory([
"/home/her-darling/APOLLO_PRO/TEST_Dribble/scripts/utils/gail/dribble_long_R1_00_178M.pkl",
"/home/her-darling/APOLLO_PRO/TEST_Dribble/scripts/utils/gail/dribble_long_R1_00_178M.pkl",
"/home/her-darling/APOLLO_PRO/TEST_Dribble/scripts/utils/gail/dribble_long_R1_00_178M.pkl",
"/home/her-darling/APOLLO_PRO/TEST_Dribble/scripts/utils/gail/dribble_long_R1_00_178M.pkl",
"/home/her-darling/APOLLO_PRO/TEST_Dribble/scripts/utils/gail/dribble_long_R1_00_178M.pkl"
][r.type]), 'rb') as f:
model = pickle.load(f)
# 收集观测
obs = self.observe()
action = self.run_mlp(obs, model)
self.sync()
self.step_counter += 1
angle_rad = np.radians(self.gym_last_internal_abs_ori) # 将角度转换为弧度
unit_vector = np.array([np.cos(angle_rad), np.sin(angle_rad)]) # 计算单位向量
if np.linalg.norm(w.ball_cheat_abs_vel[:2]) != 0:
cos_theta = np.dot(unit_vector, w.ball_cheat_abs_vel[:2]) / (
np.linalg.norm(unit_vector) * np.linalg.norm(w.ball_cheat_abs_vel[:2]))
else:
cos_theta = 0
#获取专家数据
self.expert_data = {
"actions": action,
"obs": obs
}
# 计算奖励
reward = np.linalg.norm(w.ball_cheat_abs_vel) * cos_theta
if self.ball_dist_hip_center_2d < 0.115:
reward = 0
# 判断终止
if self.player.behavior.is_ready("Get_Up"):
self.terminal = True
elif w.time_local_ms - self.reset_time > 7500 * 3 or np.linalg.norm(
w.ball_cheat_abs_pos[:2] - r.loc_head_position[:2]) > 0.45 or not w.is_ball_abs_pos_from_vision:
self.terminal = True
else:
self.terminal = False
return obs, reward, self.terminal, {}
class Train(Train_Base):
def __init__(self, script) -> None:
super().__init__(script)
def train(self, args):
# --------------------------------------- Learning parameters
n_envs = min(1, os.cpu_count())
n_steps_per_env = 1024 # RolloutBuffer is of size (n_steps_per_env * n_envs)
minibatch_size = 64 # should be a factor of (n_steps_per_env * n_envs)
total_steps = 50000000
learning_rate = 3e-4
folder_name = f'Sprint_R{self.robot_type}'
model_path = f'./scripts/gyms/logs/{folder_name}/'
expert_data = dribble.__init__().expert_data
# print("Model path:", model_path)
# --------------------------------------- Run algorithm
def init_env(i_env):
def thunk():
return dribble(self.ip, self.server_p + i_env, self.monitor_p_1000 + i_env, self.robot_type, False)
return thunk
servers = Server(self.server_p, self.monitor_p_1000, n_envs + 1) # include 1 extra server for testing
env = SubprocVecEnv([init_env(i) for i in range(n_envs)])
eval_env = SubprocVecEnv([init_env(n_envs)])
try:
if "model_file" in args: # retrain
model = GAIL.load(args["model_file"], env=env, device="cuda", n_envs=n_envs, n_steps=n_steps_per_env,
batch_size=minibatch_size, learning_rate=learning_rate)
else: # train new model
model = GAIL("MlpPolicy", env=env, expert_dataset=expert_data, verbose=1, n_steps=n_steps_per_env, batch_size=minibatch_size,
learning_rate=learning_rate, device="cuda")
model_path = self.learn_model(model, total_steps, model_path, eval_env=eval_env,
eval_freq=n_steps_per_env * 20, save_freq=n_steps_per_env * 20,
backup_env_file=__file__)
# model = GAIL(
# "MlpPolicy",
# env,
# expert_dataset=expert_data, # 提供专家数据
# verbose=1,
# n_steps=2048, # 每次更新的步数
# batch_size=64, # 批量大小
# learning_rate=3e-4
# )
except KeyboardInterrupt:
sleep(1) # wait for child processes
("\nctrl+c pressed, aborting...\n")
servers.kill()
return
env.close()
eval_env.close()
servers.kill()
def test(self, args):
# Uses different server and monitor ports
server = Server(self.server_p - 1, self.monitor_p, 1)
env = dribble(self.ip, self.server_p - 1, self.monitor_p, self.robot_type, True)
model = GAIL.load(args["model_file"], env=env)
try:
self.export_model(args["model_file"], args["model_file"] + ".pkl",
False) # Export to pkl to create custom behavior
self.test_model(model, env, log_path=args["folder_dir"], model_path=args["folder_dir"])
except KeyboardInterrupt:
print()
env.close()
server.kill()

View File

@ -94,7 +94,9 @@ class Path_Manager():
def get_hard_radius(t):
if t.unum in priority_unums:
return 1.0 # extra distance for priority roles
if len(priority_unums) > 2:
return 1.5
return None
else:
return t.state_ground_area[1]+0.2
@ -113,8 +115,8 @@ class Path_Manager():
soft_radius = 0.6
hard_radius = lambda o : 0.2
elif mode == Path_Manager.MODE_DRIBBLE:
soft_radius = 2.3
hard_radius = lambda o : o.state_ground_area[1]+0.9
soft_radius = 1.6
hard_radius = lambda o : o.state_ground_area[1]+0.3
else:
soft_radius = 1.0
hard_radius = lambda o : o.state_ground_area[1]+0.2