dribble
This commit is contained in:
parent
0a1f594d19
commit
30df6ef4a0
2
.idea/FCPCodebase.iml
generated
2
.idea/FCPCodebase.iml
generated
@ -2,7 +2,7 @@
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="jdk" jdkName="Train" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="FCPCodebase" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
|
2
.idea/misc.xml
generated
2
.idea/misc.xml
generated
@ -3,5 +3,5 @@
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="fcp_env" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Train" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="FCPCodebase" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -32,6 +32,8 @@ class Agent(Base_Agent):
|
||||
distance_to_final_target = np.linalg.norm(target_2d - self.loc_head_position[:2])
|
||||
return self.behavior.execute("Dribble", next_rel_ori,
|
||||
False) # Args: target, is_target_abs, ori, is_ori_abs, distance
|
||||
def push(self, target_2d=(15, 0), avoid_obstacles=True):
|
||||
self.behavior.execute("Push_RL")
|
||||
|
||||
def beam(self, avoid_center_circle=False):
|
||||
r = self.world.robot
|
||||
|
Binary file not shown.
@ -49,7 +49,9 @@ class Behavior():
|
||||
from behaviors.custom.Get_Up.Get_Up import Get_Up
|
||||
from behaviors.custom.Step.Step import Step
|
||||
from behaviors.custom.Walk.Walk import Walk
|
||||
classes = [Basic_Kick,Dribble,Fall,Get_Up,Step,Walk]
|
||||
from behaviors.custom.Push_RL.Push_RL import Push_RL
|
||||
|
||||
classes = [Basic_Kick,Dribble,Fall,Get_Up,Step,Walk,Push_RL]
|
||||
|
||||
'''---- End of manual declarations ----'''
|
||||
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
79
behaviors/custom/Push_RL/Env_HL.py
Normal file
79
behaviors/custom/Push_RL/Env_HL.py
Normal file
@ -0,0 +1,79 @@
|
||||
import math
|
||||
from typing import List
|
||||
import numpy as np
|
||||
from math_ops.Math_Ops import Math_Ops as U
|
||||
from behaviors.custom.Step.Step_Generator import Step_Generator
|
||||
from world.commons import Other_Robot
|
||||
from world.World import World
|
||||
from agent.Base_Agent import Base_Agent
|
||||
|
||||
|
||||
class Env_HL:
|
||||
COLS = 16
|
||||
LINS = 5
|
||||
|
||||
def __init__(self, base_agent: Base_Agent):
|
||||
self.world = base_agent.world
|
||||
self.obs = np.zeros(163, np.float32)
|
||||
|
||||
self.output = 0
|
||||
|
||||
def fill_radar(self, radar, team=None, radar_part=None, RADIAL_START=None, RADIAL_MULT=None):
|
||||
if RADIAL_MULT is None:
|
||||
RADIAL_MULT = {'team': List[Other_Robot]}
|
||||
w = self.world
|
||||
bp = w.ball_abs_pos[:2]
|
||||
C = self.COLS
|
||||
L = self.LINS
|
||||
vec_b_goal = (15.5, 0) - bp
|
||||
vec_b_goal_absdir = U.vector_angle(vec_b_goal)
|
||||
dist_closest_player = 10
|
||||
for t in team:
|
||||
if w.time_local_ms - t.state_last_update > 500:
|
||||
continue
|
||||
vec_b_opp = t.state_abs_pos[:2] - bp
|
||||
dist_b_opp = np.linalg.norm(vec_b_opp)
|
||||
if dist_b_opp < dist_closest_player:
|
||||
dist_closest_player = dist_b_opp
|
||||
vec_b_opp_dir = U.normalize_deg(U.vector_angle(vec_b_opp) - vec_b_goal_absdir)
|
||||
(div, mod) = divmod(vec_b_opp_dir + 180, 360 / C)
|
||||
zone = int(div) % C
|
||||
prog = mod * C / 360
|
||||
ang_column_weight_1 = (zone, 1 - prog)
|
||||
ang_column_weight_2 = ((zone + 1) % C, prog)
|
||||
zone = max(1, 1 + math.log((dist_b_opp + 1e-06) / RADIAL_START, RADIAL_MULT))
|
||||
prog = zone % 1
|
||||
zone = math.ceil(zone) - 1
|
||||
if zone >= L:
|
||||
continue
|
||||
rad_line_weight_1 = None if zone == 0 else (zone - 1, 1 - prog)
|
||||
rad_line_weight_2 = (zone, 1 if zone == 0 else prog)
|
||||
if rad_line_weight_1 is not None:
|
||||
radar[(radar_part, rad_line_weight_1[0], ang_column_weight_1[0])] += rad_line_weight_1[1] * \
|
||||
ang_column_weight_1[1]
|
||||
radar[(radar_part, rad_line_weight_1[0], ang_column_weight_2[0])] += rad_line_weight_1[1] * \
|
||||
ang_column_weight_2[1]
|
||||
radar[(radar_part, rad_line_weight_2[0], ang_column_weight_1[0])] += rad_line_weight_2[1] * \
|
||||
ang_column_weight_1[1]
|
||||
radar[(radar_part, rad_line_weight_2[0], ang_column_weight_2[0])] += rad_line_weight_2[1] * \
|
||||
ang_column_weight_2[1]
|
||||
return dist_closest_player
|
||||
|
||||
def observe(self, init=False):
|
||||
if init:
|
||||
self.output = 0
|
||||
radar = np.zeros((2, self.LINS, self.COLS))
|
||||
RADIAL_START = 0.3
|
||||
RADIAL_MULT = 1.7
|
||||
dist_closest_tm = self.fill_radar(radar, self.world.teammates, 0, RADIAL_START, RADIAL_MULT)
|
||||
dist_closest_opp = self.fill_radar(radar, self.world.opponents, 1, RADIAL_START, RADIAL_MULT)
|
||||
self.obs = np.append(radar.flatten(), (dist_closest_tm * 0.5, dist_closest_opp * 0.5, self.output / 40))
|
||||
return self.obs
|
||||
|
||||
def execute(self, action):
|
||||
vec_b_goal = (15.5, 0) - self.world.ball_abs_pos[:2]
|
||||
vec_b_goal_absdir = U.vector_angle(vec_b_goal)
|
||||
rel_direction = action[0] * 60
|
||||
self.output += np.clip(U.normalize_deg(rel_direction - self.output), -45, 45)
|
||||
abs_direction = U.normalize_deg(vec_b_goal_absdir + self.output)
|
||||
return abs_direction
|
140
behaviors/custom/Push_RL/Env_LL.py
Normal file
140
behaviors/custom/Push_RL/Env_LL.py
Normal file
@ -0,0 +1,140 @@
|
||||
import math
|
||||
import numpy as np
|
||||
from math_ops.Math_Ops import Math_Ops as U
|
||||
from behaviors.custom.Step.Step_Generator import Step_Generator
|
||||
from agent.Base_Agent import Base_Agent
|
||||
|
||||
|
||||
class Env_LL:
|
||||
|
||||
def __init__(self, base_agent: Base_Agent, step_width=None):
|
||||
self.world = base_agent.world
|
||||
self.obs = np.zeros(78, np.float32)
|
||||
self.STEP_DUR = 8
|
||||
self.STEP_Z_SPAN = 0.02
|
||||
self.STEP_Z_MAX = 0.7
|
||||
|
||||
r = self.world.robot
|
||||
nao_specs = base_agent.inv_kinematics.NAO_SPECS
|
||||
self.leg_length = nao_specs[1] + nao_specs[3]
|
||||
feet_y_dev = nao_specs[0] * step_width
|
||||
sample_time = r.STEPTIME
|
||||
max_ankle_z = nao_specs[5]
|
||||
|
||||
self.step_generator = Step_Generator(feet_y_dev, sample_time, max_ankle_z)
|
||||
self.inv_kinematics = base_agent.inv_kinematics
|
||||
self.DEFAULT_ARMS = np.array([
|
||||
-90, -90, 8, 8, 90, 90, 70, 70], np.float32)
|
||||
self.HL_abs_direction = None
|
||||
self.push_speed = 1
|
||||
self.step_counter = 0
|
||||
self.act = np.zeros(16, np.float32)
|
||||
self.values_l = None
|
||||
self.values_r = None
|
||||
|
||||
def observe(self, init=False):
|
||||
w = self.world
|
||||
r = self.world.robot
|
||||
|
||||
if init:
|
||||
self.step_counter = 0
|
||||
self.act = np.zeros(16, np.float32)
|
||||
|
||||
# 填充观测向量
|
||||
self.obs[0] = min(self.step_counter, 96) / 100
|
||||
self.obs[1] = r.loc_head_z * 3
|
||||
self.obs[2] = r.loc_head_z_vel / 2
|
||||
self.obs[3] = r.imu_torso_roll / 15
|
||||
self.obs[4] = r.imu_torso_pitch / 15
|
||||
self.obs[5:8] = r.gyro / 100
|
||||
self.obs[8:11] = r.acc / 10
|
||||
self.obs[11:17] = r.frp.get('lf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01, 0.01)
|
||||
self.obs[17:23] = r.frp.get('rf', np.zeros(6)) * (10, 10, 10, 0.01, 0.01, 0.01)
|
||||
self.obs[23:43] = r.joints_position[2:22] / 100
|
||||
self.obs[43:63] = r.joints_speed[2:22] / 6.1395
|
||||
|
||||
if init:
|
||||
self.obs[63] = 1
|
||||
self.obs[64] = 1
|
||||
self.obs[65] = 0
|
||||
self.obs[66] = 0
|
||||
else:
|
||||
self.obs[63] = self.step_generator.external_progress
|
||||
self.obs[64] = float(self.step_generator.state_is_left_active)
|
||||
self.obs[65] = float(not self.step_generator.state_is_left_active)
|
||||
self.obs[66] = math.sin((self.step_generator.state_current_ts / self.step_generator.ts_per_step) * math.pi)
|
||||
|
||||
ball_rel_hip_center = self.inv_kinematics.torso_to_hip_transform(w.ball_rel_torso_cart_pos)
|
||||
ball_dist_hip_center = np.linalg.norm(ball_rel_hip_center)
|
||||
|
||||
if init:
|
||||
self.obs[67:70] = (0, 0, 0)
|
||||
elif w.ball_is_visible:
|
||||
self.obs[67:70] = (ball_rel_hip_center - self.obs[70:73]) * 10
|
||||
|
||||
self.obs[70:73] = ball_rel_hip_center
|
||||
self.obs[73] = ball_dist_hip_center * 2
|
||||
|
||||
rel_HL_target = U.normalize_deg(self.HL_abs_direction - r.imu_torso_orientation)
|
||||
self.obs[74] = U.deg_cos(rel_HL_target)
|
||||
self.obs[75] = U.deg_sin(rel_HL_target)
|
||||
self.obs[76] = 2
|
||||
self.obs[77] = 2
|
||||
|
||||
# 找到最近的对手
|
||||
opps_dist = [o.state_horizontal_dist for o in w.opponents]
|
||||
if opps_dist:
|
||||
closest_opp_idx = np.argmin(opps_dist)
|
||||
o = w.opponents[closest_opp_idx]
|
||||
|
||||
if opps_dist[closest_opp_idx] < 1:
|
||||
body_parts_rel_torso_2d_avg = np.zeros(2)
|
||||
weight_sum = 0
|
||||
|
||||
for pos in o.body_parts_cart_rel_pos.values():
|
||||
bp_rel_torso_2d = r.head_to_body_part_transform('torso', pos)[:2]
|
||||
weight = math.pow(1e+06, -np.linalg.norm(bp_rel_torso_2d))
|
||||
body_parts_rel_torso_2d_avg += weight * bp_rel_torso_2d
|
||||
weight_sum += weight
|
||||
|
||||
if weight_sum > 0:
|
||||
body_parts_rel_torso_2d_avg /= weight_sum
|
||||
self.obs[76] = body_parts_rel_torso_2d_avg[0]
|
||||
self.obs[77] = body_parts_rel_torso_2d_avg[1]
|
||||
|
||||
return self.obs
|
||||
|
||||
def execute_ik(self, l_pos, l_rot, r_pos, r_rot):
|
||||
r = self.world.robot
|
||||
(indices, self.values_l, error_codes) = self.inv_kinematics.leg(
|
||||
l_pos, l_rot, True, dynamic_pose=False)
|
||||
r.set_joints_target_position_direct(indices, self.values_l, harmonize=False)
|
||||
|
||||
(indices, self.values_r, error_codes) = self.inv_kinematics.leg(
|
||||
r_pos, r_rot, False, dynamic_pose=False)
|
||||
r.set_joints_target_position_direct(indices, self.values_r, harmonize=False)
|
||||
|
||||
def execute(self, action):
|
||||
r = self.world.robot
|
||||
self.act = 0.8 * self.act + 0.2 * action * 0.9 * self.push_speed
|
||||
|
||||
(lfy, lfz, rfy, rfz) = self.step_generator.get_target_positions(
|
||||
self.step_counter == 0, self.STEP_DUR, self.STEP_Z_SPAN,
|
||||
self.leg_length * self.STEP_Z_MAX)
|
||||
|
||||
a = self.act
|
||||
l_ankle_pos = (a[0] * 0.025 - 0.01, a[1] * 0.01 + lfy, a[2] * 0.01 + lfz)
|
||||
r_ankle_pos = (a[3] * 0.025 - 0.01, a[4] * 0.01 + rfy, a[5] * 0.01 + rfz)
|
||||
|
||||
l_foot_rot = a[6:9] * (2, 2, 3)
|
||||
r_foot_rot = a[9:12] * (2, 2, 3)
|
||||
l_foot_rot[2] = max(0, l_foot_rot[2] + 18.3)
|
||||
r_foot_rot[2] = min(0, r_foot_rot[2] - 18.3)
|
||||
|
||||
arms = np.copy(self.DEFAULT_ARMS)
|
||||
arms[0:4] += a[12:16] * 4
|
||||
|
||||
self.execute_ik(l_ankle_pos, l_foot_rot, r_ankle_pos, r_foot_rot)
|
||||
r.set_joints_target_position_direct(slice(14, 22), arms, harmonize=False)
|
||||
|
||||
self.step_counter += 1
|
164
behaviors/custom/Push_RL/Push_RL.py
Normal file
164
behaviors/custom/Push_RL/Push_RL.py
Normal file
@ -0,0 +1,164 @@
|
||||
import pickle
|
||||
from behaviors.custom.Push_RL.Env_LL import Env_LL
|
||||
from behaviors.custom.Push_RL.Env_HL import Env_HL
|
||||
from math_ops.Neural_Network import run_mlp
|
||||
from math_ops.Math_Ops import Math_Ops as U
|
||||
import numpy as np
|
||||
from agent.Base_Agent import Base_Agent
|
||||
|
||||
|
||||
class Push_RL:
|
||||
|
||||
def __init__(self, base_agent: Base_Agent):
|
||||
self.world = base_agent.world
|
||||
self.description = 'RL push'
|
||||
self.auto_head = True
|
||||
self.env_LL = Env_LL(base_agent, 0.9 if self.world.robot.type == 3 else 1.2)
|
||||
self.env_HL = Env_HL(base_agent)
|
||||
self.phase = 0
|
||||
self.counter = 0
|
||||
self.behavior = base_agent.behavior
|
||||
self.path_manager = base_agent.path_manager
|
||||
self.inv_kinematics = base_agent.inv_kinematics
|
||||
|
||||
# 模型加载(这部分可能在反编译中丢失)
|
||||
with open(U.get_active_directory([
|
||||
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl"
|
||||
][self.world.robot.type]), 'rb') as f:
|
||||
self.model_LL = pickle.load(f)
|
||||
with open(U.get_active_directory([
|
||||
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl",
|
||||
"/behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl"
|
||||
][self.world.robot.type]), 'rb') as f:
|
||||
self.model_HL = pickle.load(f)
|
||||
def execute(self, reset, stop=False):
|
||||
''' Just push the ball autonomously, no target is required '''
|
||||
w = self.world
|
||||
r = self.world.robot
|
||||
bp = w.ball_abs_pos[:2]
|
||||
me = r.loc_head_position[:2]
|
||||
step_gen = self.behavior.get_custom_behavior_object('Walk').env.step_generator
|
||||
reset_push = False
|
||||
|
||||
if reset:
|
||||
self.phase = 0
|
||||
b_rel = w.ball_rel_torso_cart_pos
|
||||
if self.behavior.previous_behavior == 'Dribble':
|
||||
if b_rel[0] < 0.25:
|
||||
pass
|
||||
else:
|
||||
self.phase = 0
|
||||
elif abs(b_rel[1]) < 0.07:
|
||||
self.phase = 1
|
||||
reset_push = True
|
||||
|
||||
if self.phase == 0:
|
||||
goal_target = (15.1, np.clip(bp[1], -0.7, 0.7))
|
||||
goal_ori = U.vector_angle(goal_target - bp)
|
||||
vec_me_ball_ori = U.vector_angle(bp - me)
|
||||
rel_curr_angle = U.normalize_deg(vec_me_ball_ori - goal_ori)
|
||||
abs_targ_angle = goal_ori + np.clip(rel_curr_angle, -60, 60)
|
||||
|
||||
if bp[1] > 9:
|
||||
abs_targ_angle = np.clip(abs_targ_angle, -160, -20)
|
||||
elif bp[1] < -9:
|
||||
abs_targ_angle = np.clip(abs_targ_angle, 20, 160)
|
||||
|
||||
if bp[0] > 14:
|
||||
if bp[1] > 1.1:
|
||||
abs_targ_angle = np.clip(abs_targ_angle, -140, -100)
|
||||
elif bp[1] < -1.1:
|
||||
abs_targ_angle = np.clip(abs_targ_angle, 100, 140)
|
||||
else:
|
||||
abs_targ_angle = goal_ori
|
||||
|
||||
ball_dist = np.linalg.norm(bp - me)
|
||||
ori = None if ball_dist > 0.8 else abs_targ_angle
|
||||
(next_pos, next_ori, dist_to_final_target) = self.path_manager.get_path_to_ball(
|
||||
x_ori=abs_targ_angle, x_dev=-0.19, torso_ori=ori)
|
||||
|
||||
b_rel = w.ball_rel_torso_cart_pos
|
||||
ang_diff = abs(U.normalize_deg(abs_targ_angle - r.imu_torso_orientation))
|
||||
|
||||
# 检查是否可以进入阶段1
|
||||
if b_rel[0] >= 0.25 and abs(b_rel[1]) < 0.05 and step_gen.state_is_left_active and step_gen.switch and \
|
||||
w.time_local_ms - w.ball_abs_pos_last_update < 300 and ang_diff < 10:
|
||||
reset_push = True
|
||||
self.phase += 1
|
||||
self.counter = 0
|
||||
else:
|
||||
dist = max(0.13, dist_to_final_target)
|
||||
reset_walk = reset or self.behavior.previous_behavior != 'Walk'
|
||||
self.behavior.execute_sub_behavior('Walk', reset_walk, next_pos, True,
|
||||
next_ori if dist_to_final_target < 1 else None, True, dist)
|
||||
|
||||
if stop:
|
||||
self.phase = 0 # Reset phase on forced stop
|
||||
return True
|
||||
|
||||
if self.phase == 1:
|
||||
# 检查是否要离开场地
|
||||
leaving_field = False
|
||||
if (bp[1] > 9 and r.imu_torso_orientation > 0) or \
|
||||
(bp[1] < -9 and r.imu_torso_orientation < 0) or \
|
||||
(bp[0] > 14 and abs(bp[1]) > 1.1):
|
||||
leaving_field = abs(r.imu_torso_orientation) < 90
|
||||
|
||||
ball_hip = self.inv_kinematics.torso_to_hip_transform(w.ball_rel_torso_cart_pos)[:2]
|
||||
dist_ball_our_goal = np.linalg.norm(bp - (-15, 0))
|
||||
dist_us_our_goal = np.linalg.norm(me - (-15, 0))
|
||||
|
||||
# 检查是否丢球
|
||||
lost = abs(ball_hip[1]) > 0.2
|
||||
ball_unseen = w.time_local_ms - w.ball_last_seen >= 400
|
||||
ball_far = np.linalg.norm(ball_hip) > 0.3
|
||||
|
||||
terminal = leaving_field or (dist_ball_our_goal + 0.2 < dist_us_our_goal) or \
|
||||
(not ball_unseen and ball_far and lost)
|
||||
|
||||
if stop or terminal:
|
||||
self.phase += 1
|
||||
elif self.counter % 25 == 0:
|
||||
obs = self.env_HL.observe(reset_push)
|
||||
action = run_mlp(obs, self.model_HL)
|
||||
self.env_LL.HL_abs_direction = self.env_HL.execute(action)
|
||||
|
||||
self.counter += 1
|
||||
self.env_LL.push_speed = 1
|
||||
obs = self.env_LL.observe(reset_push)
|
||||
action = run_mlp(obs, self.model_LL)
|
||||
self.env_LL.execute(action)
|
||||
|
||||
# 绘制调试信息
|
||||
d = w.draw
|
||||
if d.enabled:
|
||||
vec = U.vector_from_angle(self.env_LL.HL_abs_direction)
|
||||
d.line(me, me + vec, 4, d.Color.red, 'opp_vec')
|
||||
|
||||
return False
|
||||
|
||||
if self.phase > 1:
|
||||
WIND_DOWN_STEPS = 50
|
||||
self.env_LL.push_speed = 1 - self.phase / WIND_DOWN_STEPS
|
||||
self.env_LL.HL_abs_direction = r.imu_torso_orientation
|
||||
obs = self.env_LL.observe(reset_push)
|
||||
action = run_mlp(obs, self.model_LL)
|
||||
self.env_LL.execute(action)
|
||||
self.phase += 1
|
||||
|
||||
if self.phase >= WIND_DOWN_STEPS - 5 or np.linalg.norm(r.get_head_abs_vel(4)) < 0.15:
|
||||
self.phase = 0
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def is_ready(self):
|
||||
''' Returns True if Push Behavior is ready to start under current game/robot conditions '''
|
||||
return True
|
BIN
behaviors/custom/Push_RL/__pycache__/Env_HL.cpython-311.pyc
Normal file
BIN
behaviors/custom/Push_RL/__pycache__/Env_HL.cpython-311.pyc
Normal file
Binary file not shown.
BIN
behaviors/custom/Push_RL/__pycache__/Env_LL.cpython-311.pyc
Normal file
BIN
behaviors/custom/Push_RL/__pycache__/Env_LL.cpython-311.pyc
Normal file
Binary file not shown.
BIN
behaviors/custom/Push_RL/__pycache__/Push_RL.cpython-311.pyc
Normal file
BIN
behaviors/custom/Push_RL/__pycache__/Push_RL.cpython-311.pyc
Normal file
Binary file not shown.
BIN
behaviors/custom/Push_RL/push_HL_R1_X3_901120_steps.pkl
Normal file
BIN
behaviors/custom/Push_RL/push_HL_R1_X3_901120_steps.pkl
Normal file
Binary file not shown.
BIN
behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl
Normal file
BIN
behaviors/custom/Push_RL/push_HL_R1_X9_1966080_steps.pkl
Normal file
Binary file not shown.
BIN
behaviors/custom/Push_RL/push_LL_R1_X3_22937600_steps.pkl
Normal file
BIN
behaviors/custom/Push_RL/push_LL_R1_X3_22937600_steps.pkl
Normal file
Binary file not shown.
BIN
behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl
Normal file
BIN
behaviors/custom/Push_RL/push_LL_R1_X9_49152000_steps.pkl
Normal file
Binary file not shown.
@ -94,7 +94,9 @@ class Path_Manager():
|
||||
|
||||
def get_hard_radius(t):
|
||||
if t.unum in priority_unums:
|
||||
return 1.0 # extra distance for priority roles
|
||||
if len(priority_unums) > 2:
|
||||
return 1.5
|
||||
return None
|
||||
else:
|
||||
return t.state_ground_area[1]+0.2
|
||||
|
||||
@ -113,8 +115,8 @@ class Path_Manager():
|
||||
soft_radius = 0.6
|
||||
hard_radius = lambda o : 0.2
|
||||
elif mode == Path_Manager.MODE_DRIBBLE:
|
||||
soft_radius = 2.3
|
||||
hard_radius = lambda o : o.state_ground_area[1]+0.9
|
||||
soft_radius = 1.6
|
||||
hard_radius = lambda o : o.state_ground_area[1]+0.3
|
||||
else:
|
||||
soft_radius = 1.0
|
||||
hard_radius = lambda o : o.state_ground_area[1]+0.2
|
||||
|
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user